
Feb 02, 2020

Version 2

Novel coronavirus (2019-nCoV) real-time RT-PCR N gene 2020 (Wuhan-N; 2019-nCoV-related screening test) V.2

DOI

dx.doi.org/10.17504/protocols.io.bb3piqmn

Judy A Northill¹, Ian M Mackay¹

¹Public Health Virology, Forensic and Scientific Services

Judy A Northill

Public Health Virology, Forensic and Scientific Services

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.bb3piqmn

Protocol Citation: Judy A Northill, Ian M Mackay 2020. Novel coronavirus (2019-nCoV) real-time RT-PCR N gene 2020 (Wuhan-N; 2019-nCoV-related screening test). **protocols.io** https://dx.doi.org/10.17504/protocols.io.bb3piqmn

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: February 02, 2020

Last Modified: February 02, 2020

Protocol Integer ID: 32591

Keywords: CoV, coronavirus, Wuhan, Real-time, RT-PCR, PCR, virus, China, 2019-nCoV, pneumonia, seafood market, WSMPV, detecting wuhan virus, wuhan virus, novel coronavirus, betacoronavirus, sars virus, final name for this virus, sequence mn908947, type virus, betacov, nucleocapsid, pcr

Abstract

- A real-time RT-PCR to detect the "novel Wuhan" betacoronavirus. Based on sequence MN908947 made available by Professor Yong-Zhen Zhang, Fudan University, Shanghai, China.
- The target region encodes the nucleocapsid (N).
- Not tested on wild-type virus (as of 25Jan2020), it is expected to be capable of detecting Wuhan virus, batlike SARS and SARS virus.
- Limit of detection not yet determined.
- A single 1 mismatch at probe-binding site identified with the *BetaCoV/USA/CA1/2020|EPI_ISL_406034* variant of 2019-nCoV (as of 29JAN2020).
- Probe is in the 3'-5' (reverse complement) direction.

Notes:

- 1. Assay is fully optimised (as of 24Jan2020).
- 2. A final name for this virus has not been decided (as of 25Jan2020).

Guidelines

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol.

Materials

STEP MATERIALS

🔀 SuperScript™ III Platinum™ One-Step qRT-PCR Kit **Life Technologies Catalog #**11732088

Protocol materials

SuperScript™ III Platinum™ One-Step qRT-PCR Kit Life Technologies Catalog #11732088

⊠ SuperScript™ III Platinum™ One-Step qRT-PCR Kit **Life Technologies Catalog #**11732088

Troubleshooting

Mix

1 **Oligonucleotides**

Oligo Name	Sequence 5'-3'	Loc atio n bas ed on NC_ 045 512
Wuhan-TM2020For	TCGTGCTACAACTTCCTCAAG	286 48- 286 68
Wuhan- TM2020Probe	6FAM- CCGCCTCTGCTCCCTTCTGC-BHQ1	2871 4- 286 95
Wuhan-TM2020Rev	CTGCCWGGAGTTGAATTTCTTG	287 80- 287 59

^{*}GenBank accession NC_045512 Wuhan seafood market pneumonia virus isolate Wuhan-Hu-

2 Reagents

SuperScript™ III Platinum™ One-Step qRT-PCR Kit LifeTechnologies Catalog #11732088

3 **Synthetic controls**

Synthetic controls are produced using the **binary synthetic template oligonucleotide** positive control for in-house diagnostic real-time RT-PCR method.

The oligonucleotide sequences required to make controls for this assay are:

Probe control:

AAAATAATACGACTCACTATAGGGTGAAGAGAATCCACAAGGAATTGAACCGCCTCTGCTC CCTTCTGCACAGTGTTCAGCAGGTCCTGTTGAAAA

Primer control:

AAAATAATACGACTCACTATAGGGTCGTGCTACAACTTCCTCAAGATGATCTGGCACGGGAC CCTCCAACAGAAATTCAACTCCAGGCAGAAAA

Reaction Set-up

- Assay has been designed to be used on both a Rotor-Gene 6000 / Rotor-Gene Q 5plex using 100-place rotor discs and an ABI 7500 Fast real-time machine.
- Total reaction volume is 20μL.
- Prepare sufficient for number of reaction plus a 'dead volume' usually 2 extra. Adjust as necessary if using a robotic dispenser.

Re	eagent	Volume (ul) X1	Final reaction concentration
N	uclease free water	4.41	
W	/uhan-TM2020F (200uM)	0.05	500nM
W	/uhan-TM2020R (200uM)	0.09	900nM
W	/uhan-TM2020Probe (100uM)	0.01	50nM
2	X Reaction mix*	10	1X
	uperscript III/Platinum Taq enzyme iix*	0.4	
R	OX reference dye (25uM)*	0.04	50nM
T	OTAL VOLUME	15	

^{*}Superscript®III Platinum® One-Step qRT-PCR kit

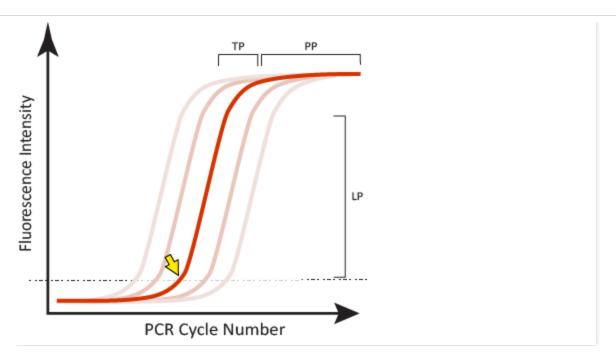
Dispense 15µl to each reaction well.

Add 5µl of template, extracted RNA, controls or NTC (nuclease-free water).

Total reaction volume is 20µl.

Amplification

5 **PCR** amplification



	1 cycl e	40 cycl es		
	50° C 5min	95° C 3 seco nds		
	95° C 2min	60° C 30 seco nds*		

^{*}Florescence acquisition step

Result Analysis

- 6 The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:
 - 1. A sigmoidal curve the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
 - 2. A suitable level of fluorescence intensity as measured in comparison to a positive control (y-axis)
 - 3. A defined threshold (C_T) value which the fluorescent curve has clearly exceeded (Fig.1 arrow) and which sits early in the log-linear phase and is <40 cycles
 - 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a C_T value >40 cycles is considered a negative result
 - 5. NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.