Neural progenitor banking

Celeste M Karch¹, Rita Martinez¹, Jacob Marsh¹
¹Washington University in St Louis

dx.doi.org/10.17504/protocols.io.x89frz6

Neurodegeneration Method Development Community
Tech. support email: ndcn-help@chanzuckerberg.com

Celeste Karch
Washington University in St Louis

ATTACHMENTS
- IPSC CORTICAL DIFFERENTIATION 022017.pdf

PROTOCOL CITATION

Celeste M Karch, Rita Martinez, Jacob Marsh 2019. Neural progenitor banking. protocols.io
https://dx.doi.org/10.17504/protocols.io.x89frz6

LICENSE
This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED
Feb 17, 2019

LAST MODIFIED
Feb 27, 2019

OWNER HISTORY
- Feb 17, 2019 Ashley Humphrey University of Tennessee, Knoxville
- Feb 26, 2019 Celeste Karch Washington University in St Louis

PROTOCOL INTEGER ID
20481

PARENT PROTOCOLS
Part of collection
- IPSC Cortical Differentiation

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
1. Upon reaching at least 85% confluency, harvest neural progenitor cells as described in protocol below.

 Neural progenitor expansion protocol

2. Perform a cell count in 3 mL of NIM using a hemacytometer.

3. Add equal volumes of NIM and 2x neural freezing medium to the NPC cell suspension for a final 1 x 10^6 cells/mL.

4. Gently mix solution and distribute 1 mL into sterile cryovials. Store cryovials in Styrofoam containers at -80 °C for 48:00:00 and then transfer to liquid nitrogen for long-term storage.