References considered during the development of this NCI BEBP document are listed below (also See Section 9.2 in the Attached PDF) and include hyperlinks to the PubMed abstract and NCI Biospecimen Research Database curation where applicable. References are cited within the Summaries of Literature Evidence (See Section 7.0) in the Attached PDF.
1. Micke, P., et al., Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest, 2006. 86(2): p. 202-11.
2. van Maldegem, F., et al., Effects of processing delay, formalin fixation, and immunohistochemistry on RNA Recovery From Formalin-fixed Paraffin-embedded Tissue Sections. Diagn Mol Pathol, 2008. 17(1): p. 51-8.
3. Hůlková, M. and J. Zeman, Placental tissue as model for pilot study focused on RNA analysis from human foetal tissue. Prague Med Rep, 2011. 112(2): p. 93-101.
4. Espina, V., et al., A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics, 2008. 7(10): p. 1998-2018.
5. Walker, L.A., et al., Tissue procurement strategies affect the protein biochemistry of human heart samples. J Muscle Res Cell Motil, 2011. 31(5-6): p. 309-14.
6. Huang, J., et al., Effects of ischemia on gene expression. J Surg Res, 2001. 99(2): p. 222-7.
7. Spruessel, A., et al., Tissue ischemia time affects gene and protein expression patterns within minutes following surgical tumor excision. Biotechniques, 2004. 36(6): p. 1030-7.
8. Bray, S.E., et al., Gene expression in colorectal neoplasia: modifications induced by tissue ischaemic time and tissue handling protocol. Histopathology, 2010. 56(2): p. 240-50.
9. Johnsen, I.K., et al., Evaluation of a standardized protocol for processing adrenal tumor samples: preparation for a European adrenal tumor bank. Horm Metab Res, 2010. 42(2): p. 93-101.
10. Jones, R.J., et al., The impact of delay in cryo-fixation on biomarkers of Src tyrosine kinase activity in human breast and bladder cancers. Cancer Chemother Pharmacol, 2008. 61(1): p. 23-32.
11. De Cecco, L., et al., Impact of biospecimens handling on biomarker research in breast cancer. BMC Cancer, 2009. 9: p. 409.
12. Blackhall, F.H., et al., Stability and heterogeneity of expression profiles in lung cancer specimens harvested following surgical resection. Neoplasia, 2004. 6(6): p. 761-7.
13. Sehringer, B., et al., Evaluation of different strategies for real-time RT-PCR expression analysis of corticotropin-releasing hormone and related proteins in human gestational tissues. Anal Bioanal Chem, 2005. 383(5): p. 768-75.
14. Jewell, S.D., et al., Analysis of the molecular quality of human tissues: an experience from the Cooperative Human Tissue Network. Am J Clin Pathol, 2002. 118(5): p. 733-41.
15. Hatzis, C., et al., Effects of tissue handling on RNA integrity and microarray measurements from resected breast cancers. J Natl Cancer Inst, 2011. 103(24): p. 1871-83.
16. Sewart, S., et al., Molecular analysis of a collection of clinical specimens stored at 4 degrees C as an alternative to snap-freezing. Int J Oncol, 2009. 35(2): p. 381-6.
17. Bergers, E., et al., The influence of fixation delay on mitotic activity and flow cytometric cell cycle variables. Hum Pathol, 1997. 28(1): p. 95-100.
18. Viana, C.R., et al., The interference of cold ischemia time in the quality of total RNA from frozen tumor samples. Cell Tissue Bank, 2012.
19. Freidin, M.B., et al., Impact of collection and storage of lung tumor tissue on whole genome expression profiling. J Mol Diagn, 2012. 14(2): p. 140-8.
20. Bao, W.G., et al., Biobanking of Fresh-frozen Human Colon Tissues: Impact of Tissue Ex-vivo Ischemia Times and Storage Periods on RNA Quality. Ann Surg Oncol, 2012.
21. Bertilsson, H., et al., RNA quality in fresh frozen prostate tissue from patients operated with radical prostatectomy. Scand J Clin Lab Invest, 2010. 70(1): p. 45-53.
22. Copois, V., et al., Impact of RNA degradation on gene expression profiles: assessment of different methods to reliably determine RNA quality. J Biotechnol, 2007. 127(4): p. 549-59.
23. Strand, C., et al., RNA quality in frozen breast cancer samples and the influence on gene expression analysis--a comparison of three evaluation methods using microcapillary electrophoresis traces. BMC Mol Biol, 2007. 8: p. 38.
24. Naber, D. and H.G. Dahnke, Protein and nucleic acid content in the aging human brain. Neuropathol Appl Neurobiol, 1979. 5(1): p. 17-24.
25. Preece, P., et al., An optimistic view for quantifying mRNA in post-mortem human brain. Brain Res Mol Brain Res, 2003. 116(1-2): p. 7-16.
26. Preece, P. and N.J. Cairns, Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res, 2003. 118(1-2): p. 60-71.
27. Kobayashi, H., et al., Stability of messenger RNA in postmortem human brains and construction of human brain cDNA libraries. J Mol Neurosci, 1990. 2(1): p. 29-34.
28. De Paepe, M.E., et al., Postmortem RNA and protein stability in perinatal human lungs. Diagn Mol Pathol, 2002. 11(3): p. 170-6.
29. Birdsill, A.C., et al., Postmortem interval effect on RNA and gene expression in human brain tissue. Cell Tissue Bank, 2011. 12(4): p. 311-8.
30. Heinrich, M., et al., Successful RNA extraction from various human postmortem tissues. Int J Legal Med, 2007. 121(2): p. 136-42.
31. Johnson, S.A., D.G. Morgan, and C.E. Finch, Extensive postmortem stability of RNA from rat and human brain. J Neurosci Res, 1986. 16(1): p. 267-80.
32. Cummings, T.J., et al., Recovery and expression of messenger RNA from postmortem human brain tissue. Mod Pathol, 2001. 14(11): p. 1157-61.
33. Atz, M., et al., Methodological considerations for gene expression profiling of human brain. J Neurosci Methods, 2007. 163(2): p. 295-309.
34. Schramm, M., et al., Stability of RNA transcripts in post-mortem psychiatric brains. J Neural Transm, 1999. 106(3-4): p. 329-35.
35. Sherwood, K.R., et al., RNA integrity in post mortem human variant Creutzfeldt-Jakob disease (vCJD) and control brain tissue. Neuropathol Appl Neurobiol, 2011. 37(6): p. 633-42.
36. Larsen, S., et al., Northern and Southern blot analysis of human RNA and DNA in autopsy material. APMIS, 1992. 100(6): p. 498-502.
37. Gala, J.L., et al., HIV-1 detection by nested PCR and viral culture in fresh or cryopreserved postmortem skin: potential implications for skin handling and allografting. J Clin Pathol, 1997. 50(6): p. 481-4.
38. Goggins, M., J.M. Scott, and D.G. Weir, Regional differences in protein carboxymethylation in post-mortem human brain. Clin Sci (Lond), 1998. 94(6): p. 677-85.
39. Steu, S., et al., A procedure for tissue freezing and processing applicable to both intra-operative frozen section diagnosis and tissue banking in surgical pathology. Virchows Arch, 2008. 452(3): p. 305-12.
40. Turbett, G.R. and L.N. Sellner, The use of optimal cutting temperature compound can inhibit amplification by polymerase chain reaction. Diagn Mol Pathol, 1997. 6(5): p. 298-303.
41. Pasic, R., B. Djulbegovic, and J.L. Wittliff, Influence of O.C.T. embedding compound on determinations of estrogen and progestin receptors in breast cancer. Clin Chem, 1989. 35(12): p. 2317-9.
42. Muensch, H. and W.C. Maslow, Interference of O.C.T. embedding compound with hormone receptor assays. Am J Clin Pathol, 1984. 82(1): p. 89-92.
43. Schwartz, S.A., M.L. Reyzer, and R.M. Caprioli, Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom, 2003. 38(7): p. 699-708.
44. Weston, L.A. and A.B. Hummon, Comparative LC-MS/MS analysis of optimal cutting temperature (OCT) compound removal for the study of mammalian proteomes. Analyst, 2013. 138(21): p. 6380-4.
45. Vonsattel, J.P., et al., An improved approach to prepare human brains for research. J Neuropathol Exp Neurol, 1995. 54(1): p. 42-56.
46. Adam, M., et al., The effect of liquid nitrogen submersion on cryopreserved human heart valves. Cryobiology, 1990. 27(6): p. 605-14.
47. Bischof, J., K. Christov, and B. Rubinsky, A morphological study of cooling rate response in normal and neoplastic human liver tissue: cryosurgical implications. Cryobiology, 1993. 30(5): p. 482-92.
48. Leidenfrost, J.G., C. Embach, and C.S.E. Wares, A Tract about Some Qualities of Common Water. 1964: Carolyn S.E. Wares.
49. Wu, J.S., G.R. Hogan, and J.D. Morris, Modified methods for preparation of cryostat sections of skeletal muscle. Muscle Nerve, 1985. 8(8): p. 664-6.
50. Crawford, D., et al., New storage procedure for human tumor biopsies prior to estrogen receptor measurement. Cancer Res, 1984. 44(6): p. 2348-51.
51. Mellen, P. and G. Clark, Isopentane frozen sections for intraoperative diagnosis. J Histotechnol, 1991. 14(4): p. 285.
52. Erickson, Q.L., et al., Flash freezing of Mohs micrographic surgery tissue can minimize freeze artifact and speed slide preparation. Dermatol Surg, 2011. 37(4): p. 503-9.
53. McGinley, D.M., Z. Posalaky, and I.P. Posalaky, The use of fresh-frozen tissue in diagnostic transmission electron microscopy. Ultrastruct Pathol, 1984. 6(1): p. 89-98.
54. McLeay, W.R., et al., Epidermal growth factor receptor in breast cancer: storage conditions affecting measurement, and relationship to steroid receptors. Breast Cancer Res Treat, 1992. 22(2): p. 141-51.
55. Mackey, E.A., et al., Quality assurance in analysis of cryogenically stored liver tissue specimens from the NIST National Biomonitoring Specimen Bank (NBSB). Science of the Total Environment, 1999. 226(2-3): p. 165-176.
56. Muschenheim, F., J.L. Furst, and H.A. Bates, Increased incidence of positive tests for estrogen binding in mammary carcinoma specimens transported in liquid nitrogen. Am J Clin Pathol, 1978. 70(5): p. 780-2.