Mar 01, 2019

Molecular testing of carrion flies for rabbit calicivirus detection

DOI

dx.doi.org/10.17504/protocols.io.ux7exrn

Robyn Hall^{1,2}

¹CSIRO Health & Biosecurity; ²Centre for Invasive Species Solutions

Robyn Hall

DOI: dx.doi.org/10.17504/protocols.io.ux7exrn

Protocol Citation: Robyn Hall 2019. Molecular testing of carrion flies for rabbit calicivirus detection. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.ux7exrn</u>

Manuscript citation:

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: October 24, 2018

Last Modified: March 01, 2019

Protocol Integer ID: 17119

Abstract

Carrion fies are relatively easy and inexpensive to collect, systematic sampling networks can be established, and rabbit calicivirus can be detected in flies using high-sensitivity molecular methods. However, previous studies were conducted when there was only a single pathogenic rabbit calicivirus circulating in Australia. The aim of this study was to optimise molecular testing protocols of carrion flies for rabbit calicivirus detection at the virus variant level.

Guidelines

This protocol is optimised for 20 to 100 mg of fly tissue. In our experience, up to 17% of fly weight may be lost during freeze-drying. Therefore, it is recommended to start with >48 mg of fly tissue for RNA extraction. This is approximately five large calliphorid flies (e.g. *C. augur, C. stygia*) or seven small flies (e.g. *Chrysomya varipes*).

Materials

MATERIALS

X Maxwell(R) 16 LEV simplyRNA Tissue Kit, 48 preps Promega Catalog #AS1280

X Maxwell(R) RSC System **Promega Catalog #**AS4500

🔀 QIAGEN OneStep Ahead RT-PCR Kit Qiagen Catalog #220213

X Envirosafe fly trap **Bunnings Catalog #**4475914

SensiFAST[™] SYBR[®] No-ROX Kit **Bioline Catalog #**BIO-98005

Safety warnings

All work conducted in the laboratory should be undertaken with good laboratory practices in mind. Appropriate personal protective equipment should be worn to protect from biological and chemical hazards.

Disposal of waste produced during RNA extraction should be in accordance with local guidelines.

Before start

RNA is highly susceptible to degradation from RNases that are ubiquitous in the environment. Care should be taken to avoid contamination of RNA with RNases, for example, by using RNase decontamination solutions and dedicated reagents and consumables for RNA work.

Both RT-qPCR and RT-PCR assays are highly susceptible to contamination, either from positive controls or between samples. All precautions should be taken to avoid contamination, including running appropriate negative controls at each stage of the process and using aerosol barrier tips.

Trapping of flies

1

- Ensure trap has been thoroughly decontaminated by soaking in 10% household bleach for at least 30 minutes, followed by rinsing with water.
 - Place attractant in a specimen jar covered with a gauze swab to prevent flies coming into direct contact with the bait.
 - Place trap in collection location for one to seven days.
 - Freeze entire trap at **U** -20 °C to immobilise flies.
 - Transfer >48 mg of fly tissue (approximately five large calliphorid flies (e.g. *C. augur*, *C. stygia*) or seven small flies (e.g. *Chrysomya varipes*) to a pre-weighed 1.8 ml tube containing 1mm glass beads. Negative control flies should be processed in parallel for each batch \$0 °C\$ of testing.
 - Transfer remaining flies to storage containers for long-term storage at g -20 °C.
 - Decontaminate trap before reuse.

Freeze-drying

- 2 Loosen lids on tubes containing flies and place in freeze-drying chamber.
 - Freeze-dry overnight and weigh tube after freeze-drying to calculate dry fly tissue weight.
 - Homogenise samples using a Precellys 24-dual tissue homogeniser (Bertin technologies). Spin homogenised samples briefly to collect material at the bottom of the tube.

Preparation for RNA extraction

- **3** Decontaminate work area prior to commencing RNA extraction.
 - Ensure DNase I has been prepared by adding Δ 275 μ L of nuclease-free water and
 - Δ 5 μ L of Blue Dye to one vial of lyophilised DNase I. Store at " -20 °C .
 - Set heat-block to § 70 °C .
 - To avoid contaminating stock bottles, prepare aliquots of a) homogenisation buffer containing 20 µl.ml⁻¹ of 1-Thioglycerol (chill before use), b) lysis buffer, and c) DNase l.
 - Label one 0.5 ml elution tube per sample and add $\boxed{4}$ 50 μ L of nuclease-free water to the bottom of each tube.
 - Add <u>Δ 10 μL</u> of homogenisation buffer containing 1-Thioglycerol per mg of dry fly tissue volumes (minimum 200 μl).

- Mix homogenate (minimum 200 μl) with an equal volume of lysis buffer by vortexing for 00:00:15

Preparation of cartridge for extraction

- Snap cartridges into position on deck tray of the Maxwell RSC instrument. Centre the cartridges in the tray.
 - Remove foil from cartidges.
 - Place an LEV Plunger in well #8 of each cartridge.
 - Add $_$ 10 μ L of DNase I to well #4 of each cartridge.
 - Place elution tube into position on the deck tray.
 - Add 400μ L of homogenate/lysis buffer mix to well #1.
 - Place deck tray into Maxwell RSC instrument and open lids of elution tubes.
 - Run Maxwell RSC instrument.
 - Immediately after extraction, store RNAs at accordance with local guidelines.
 Immediately after extraction, store RNAs at Immedi

RT-qPCR

5 As described in https://www.ncbi.nlm.nih.gov/pubmed/29226567

> **Kit**: SensiFAST[™] SYBR[®] No-ROX Kit (Bioline) **Primers**:

GI_qRTPCR_Fw (5'- TTGACRTACGCCCTGTGGGACC-3')

GI_qRTPCR_Rv (5'- TCAGACATAAGARAAGCCATTRGYTG-3')

Templates: NTC (nfH₂O) in duplicate, RHDV standards in duplicate (10^1 to 10^7), fly RNAs in duplicate, positive control in duplicate

Prepare RT-qPCR mastermix

	Reagent	Amount (ul)
	nfH2O	2.7
_	2x OneStep mix	5
_	10 uM GI_qRTPCR_Fw	0.5
_	10 uM GI_qRTPCR_Rv	0.5
_	RNase inhibitor	0.2
_	Reverse transcriptase	0.1

RT-qPCR mastermix

- Add $4 9 \mu L$ of mastermix to respective wells of a 96 well PCR plate.
- Add <u>IµL</u> of RNA template to respective wells. Include RHDV standards for quantification (see publication for details), a no template control, +/- a positive control to monitor interrun variation.

Cycling:

₿ 45 °C for	00:10:00		
₿ 95 °C for	00:05:00		
40 cycles of:			
	00:00:10		
₿ 63 °C for	00:00:40		
₿ 78 °C for	00:00:10	with acquisition	
Melt curve 📲	65 °C to 📱	95 °C with an increment o	f 📱 0.5 °C and acquisition

Strain-specific RT-PCR

6 As described in <u>https://www.ncbi.nlm.nih.gov/pubmed/29226567</u>.

Kit: OneStep *Ahead* RT-PCR Kit (Qiagen) **Primers**:

Primer name	Sequence (5′→3′)	Amplico n size (bp)	Binding region
GI.1a- Aus_fwd	GCGTGGCATTGTGCGCAGCA TC	562	Non- structural
GI.1a- Aus_rev	TGTTGGTGATAAGCCATAATC GCG		
GI.1c_fwd	AGCAAGACTGTTGACTCAATT TCG	435	Capsid
GI.1c_rev	AGGCCTGCACAGTCGTAACG TT		
GI.2_fwd	TTTCCCTGGAAGCAGTTCGT CA	336	Capsid
GI.2_rev	TGTTGTCTGGTTTATGCCATT TGC		
GI.1a-K5_fwd	TTTATAGATGTATGCCCGCTC AAC	263	Non- structural

_			
	GI.1a-K5_rev	CCGTTCGAGTTCCTTGCGGA	

Primer sequences for strain-specific RT-PCR assays

Templates: NTC (nfH₂O), fly RNA, strain-specific positive control

- Dilute RNAs 1/10 in nuclease-free water.
- Prepare four RT-PCR mastermixes one per primer pair.

	Reagent	Amount (ul)
	nfH2O	3.6
	OneStep Ahead RT-PCR Master Mix	4.0
Γ	OneStep Ahead RT Mix	0.4
	10 uM Fwd primer	0.5
Γ	10 uM Rev primer	0.5

RT-PCR mastermix

- Add \underline{A} 9 μ L of mastermix to respective PCR tubes.
- Add $\underline{A}_{1 \mu L}$ of diluted RNA template to respective tubes.

Cycling:

₿ 50 °C f	or 🚫 00:10:00			
₿ 95 °C f	or 👏 00:05:00			
40 cycles of:				
₿ 95 °C fo	or 🚫 00:00:10			
₿ 63 °C f	or 🚫 00:00:20			
₿ 72 °C fo	or 👏 00:00:10			
Final extens	on at 📱 72 °C for 🚫 00:02:00			
Hold at 4 °C				

• Run PCRs on a 1-1.5% agarose gel at 80-100 V for 30-60 minutes.