Molecular Phenotype Distribution of Single Rat ICN Neurons - Heart B V.2

Shaina Robbins¹, Alison Moss¹, Sean Nieves¹, Sirisha Achanta¹

¹Thomas Jefferson University

dx.doi.org/10.17504/protocols.io.bfxvpn6

ABSTRACT

This collection of protocols were used to obtain the current data for the Blackfynn Dataset Molecular Phenotype Distribution of Single Rate ICN Neurons, which we refer to as Rat Heart B.

DO

dx.doi.org/10.17504/protocols.io.bfxvpn6

COLLECTION CITATION

Shaina Robbins, Alison Moss, Sean Nieves, Sirisha Achanta 2020. Molecular Phenotype Distribution of Single Rat ICN Neurons - Heart B. protocols.io

https://dx.doi.org/10.17504/protocols.io.bfxvpn6

KEYWORDS

Rat Intracardiac Neurons, Single Neuron Transcriptomics, Laser Capture Microdissection, Molecular Phenotype Gradients of Cell Types

LICENSE

This is an open access collection distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

May 04, 2020

LAST MODIFIED

May 04, 2020

COLLECTION INTEGER ID

36565

PARENT PROTOCOLS

Part of collection

2020 Featured Protocols

This collection of protocols were used to obtain the current data for the Blackfynn Dataset Molecular Phenotype
Distribution of Single Rate ICN Neurons, which we refer to as Rat Heart B.

FILES

- Embedding Rat Heart
  Version 1
  by Shaina Robbins, Thomas Jefferson University

- Sectioning Rat Heart
  Version 1
  by Shaina Robbins, Thomas Jefferson University

- 0.1% Cresyl Violet Stain (pH 4.3)
  Version 1
  by Shaina Robbins, Thomas Jefferson University

- Staining/Dehydration 10 micron Rat Heart
  Version 1
  by Shaina Robbins, Thomas Jefferson University

- SINGLE CELL HIGH-THROUGHPUT QRT-PCR PROTOCOL
  Version 2
  by Sirisha Achanta

Citation: Shaina Robbins, Alison Moss, Sean Nieves, Sirisha Achanta (05/04/2020). Molecular Phenotype Distribution of Single Rat ICN Neurons - Heart B. https://dx.doi.org/10.17504/protocols.io.bfxyjnp6.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.