

MojoSort™ Mouse CD11c Nanobeads Column Protocol

DOI

dx.doi.org/10.17504/protocols.io.7abhian

Sam Li¹

¹BioLegend

BioLegend

Tech. support email: tech@biolegend.com

Sam Li

BioLegend

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.7abhian

External link: https://www.biolegend.com/protocols/mojosort-mouse-cd11c-nanobeads-column-protocol/4768/

Protocol Citation: Sam Li . MojoSort™ Mouse CD11c Nanobeads Column Protocol. **protocols.io** https://dx.doi.org/10.17504/protocols.io.7abhian

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Created: September 11, 2019

Last Modified: September 11, 2019

Protocol Integer ID: 27683

Keywords: MojoSort[™], CD11c, nanobeads, column, cell separation, best dilution factor, dilution, nanobead, fewer beads than with other commercial supplier, fewer bead, used separation column, bead, separation column, cell

Abstract

BioLegend MojoSort[™] nanobeads work in commonly used separation columns, based on our internal research as well as validation by external testing by academic labs. This simple protocol consists of following the MojoSort[™] protocol to label the cells with **pre-diluted** MojoSort[™] reagents and using the columns as indicated by the manufacturer.

Note: Due to the properties of our beads, it may be possible to use far fewer beads than with other commercial suppliers. We recommend a titration to find the best dilution factor. However, as a general rule, dilutions ranging from 1:3 to 1:20 for the Nanobeads can be used. Please contact BioLegend Technical Service (tech@biolegend.com) if further assistance is needed.

Guidelines

MojoSort™ magnetic particles can be used with other commercially available magnetic separators, both free standing magnets and column-based systems. Because MojoSort™ protocols are optimized for the MojoSort™ separator, the protocols may need to be adjusted for other systems. Please contact BioLegend Technical Service (tech@biolegend.com) for more information and guidance. We do not recommend using MojoSort™ particles for BD's IMag™ or Life Technologies' DynaMag™.

Sample Preparation: Enzymatic digestion of mouse spleen is recommended to achieve the highest purity and yield of CD11c+cells. There are several protocols published that can be applied. As a general guideline, cut mouse spleen into pieces and incubate in 0.5 mg/ml Collagenase for 30 to 60 minutes at room temperature or 37°C. Place the tube in a rocking platform with continuous agitation or gently pipette every 10 minutes. Alternatively, inject 1 ml of enzymes solution in the uncut organ. Force the tissue through a 70 µm filter to prepare a single cell suspension, and wash with complete media. Resuspend cells in 0.1 mg/ml DNase 1 solution and incubate at room temperature for 10 minutes. Again, filter cells through a 70 µm filter and wash with complete media. Resuspend in complete media or MojoSort™ Buffer and keep on ice until ready to use.

Materials

MATERIALS

- **⊠** MojoSort[™] Buffer **BioLegend Catalog** #480017
- X TruStain FcX™ PLUS (anti-mouse CD16/32) Antibody **BioLegend Catalog #**156603
- **⊠** MojoSort[™] Mouse CD11c Nanobeads **BioLegend Catalog** #480077

Additional reagents:

- -commercially available cell separation columns
- -5 mL polypropylene tubes
- -70 μm cell strainer

Troubleshooting

- 1 Prepare cells from your tissue of interest or blood without lysing erythrocytes.
- In the final wash of your sample preparation, resuspend the cells in MojoSort™ Buffer by adding up to 4 mL in a 5 mL (12 × 75 mm) polypropylene tube.

Note: Keep MojoSort™ Buffer on ice throughout the procedure.

3 Filter the cells with a 70 µm cell strainer, centrifuge at 300xg for 5 minutes, and resuspend in a small volume of MojoSort™ Buffer. Count and adjust the cell concentration to 1 × 10⁸ cells/mL by adding MojoSort™ Buffer.

5m

Aliquot 100 μL (10^7 cells) into a new tube. **Add 10 μL of TruStain FcX (anti-mouse CD16/32 antibody)**, mix well and **incubate at room temperature for 10 minutes**. Scale up the volume accordingly if separating more cells. For example, if the volume of Human TruStain FcX[™] for 1×10^7 cells is 10 μL, add 100 μL for 1×10^8 cells. When working with less than 10^7 cells, use indicated volumes for 10^7 cells.

10m

Resuspend the beads by vortexing, maximum speed, 5 touches. Add **10 μL of Antibody Nanobeads**. Mix well and **incubate on ice for 15 minutes**. Scale up the volume accordingly if separating more cells.

15m

Wash the cells by adding MojoSort™ Buffer up to 4 mL. Centrifuge the cells at 300xg for 5 minutes.

5m

- 7 Discard the supernatant.
- 8 Resuspend cells in the appropriate amount of MojoSort™ Buffer and proceed to separation. At least 500 µL is needed for column separation.

Note: There are several types of commercially available columns, depending on your application. Choose the one that fits best your experiment:

	Max. number of labeled cells	Max. number of total cells	Cell suspension volume	Column rinse volume	Cell wash volume	Elution volume
Small Capacity	1 x 10 ⁷	2 x 10 ⁸	500μL for up to 10 ⁸ cells	1ml	1 ml	1 ml
Medium Capacity	1 x 10 ⁸	2 x 10 ⁹	500μL for up to 10 ⁹ cells	3ml	3 ml	5 ml
Large Capacity	1 x 10 ⁹	2 x 10 ¹⁰	500µL for up to 10 ¹⁰ cells	20-50ml	30 ml	20 ml

Example of magnetic separation with medium capacity columns:

- 9 Place the column in a magnetic separator that fits the column.
- 10 Rinse the column with 3 mL of cell separation buffer.
- 11 Add the labeled cell suspension to the column through a 30 µm filter and collect the fraction containing the unlabeled cells.
- 12 Wash the cells in the column 3 times with 3 mL of buffer and collect the fraction containing the unlabeled cells. Combine with the collected fraction from step 3. These cells may be useful as controls, to monitor purity/yield, or other purposes.
- 13 Take away the column from the magnet and place it on a tube. Then add 5 mL of buffer and flush out the magnetically labeled fraction with a plunger or supplied device. These are the positively isolated cells of interest; do not discard. To increase the purity of the magnetically labeled fraction repeat the isolation process with a new, freshly prepared column.