Cell organelles represent a minor fraction of the total cellular content, making whole-cell profiling inadequate for monitoring changes in the mitochondrial proteome, metabolome, and lipidome. Traditional techniques for purifying mitochondria have inherent limitations, often compromising organelle purity, isolation time, or viability. Additionally, the components of conventional organellar isolation buffers, such as sucrose, can interfere with mass spectrometry (MS) profiling. To overcome these challenges, a novel method called 'Mito-IP,' was developed which facilitates the rapid immunopurification of pure and intact mitochondria. This method enables mitochondrial isolation within 10 minutes and supports various downstream applications, including immunoblotting, proteomic, metabolomic, and other -omic analyses. Following the success of the Mito-IP method, the same epitope-tagged concept is being extended to the isolation of other organelles, including lysosomes (Lyso-IP), Golgi (Golgi-IP), and peroxisomes (Peroxo-IP). The following optimised protocol details the immunoprecipitation of mitochondria from cultured cells. The same steps apply to the immunopurification of other organelles when the HA-epitope tag is present on the organelle of interest.