
Sep 30, 2022

Version 2

METATAC V.1 V.2

DOI

dx.doi.org/10.17504/protocols.io.kqdg36×51g25/v2

Honggui Wu¹, Xiang Li^{2,1,3}, Fanchong Jian^{2,1,4}, Ayijiang Yisimayi^{2,1,5}, X. Sunney Xie^{2,1,6}

¹Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China;

²Beijing Innovation Center for Genomics, Peking University, Beijing 100871, China;

³Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;

⁴College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PRC;

⁵School of Life Sciences, Peking University, Beijing, 100871, China;

⁶School of Life Sciences, Peking University, Beijing 100871, China Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

Honggui Wu

Biomedical Pioneering Innovation Center, Peking University, ...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.kqdg36x51g25/v2

External link: https://www.pnas.org/doi/10.1073/pnas.2206450119

Protocol Citation: Honggui Wu, Xiang Li, Fanchong Jian, Ayijiang Yisimayi, X. Sunney Xie 2022. METATAC V.1. protocols.io

https://dx.doi.org/10.17504/protocols.io.kqdg36x51g25/v2Version created by Honggui Wu

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: September 30, 2022

Last Modified: September 30, 2022

Protocol Integer ID: 70695

Keywords: scATAC-seq, chromatin accessibility, single-cell epigenomics, meta transposome, cell chromatin accessibility analysis, accessible chromatin, chromatin accessibility analysis, maximum dna recovery, tn5 from bound dna, cell atac, metatac, nextera transposome, bound dna, meta chemistry, dna, meta sequence, atac protocol, extensive biochemical modification, tagging amplification,

Funders Acknowledgements:

the Beijing Municipal Commission of Science and Technology

Grant ID: Z201100005320015

Abstract

Abstract

Here we describe a protocol for multiplexed end-tagging amplification of transposase accessible chromatin (METATAC), a high-sensitivity single-cell ATAC-seq technique with the help of META chemistry and extensive biochemical modifications. We improved the protocol from three aspects, first, we used Omni-ATAC protocol to permeabilize cells, which greatly reduced mitochondrial reads to less than 0.5%. Second, we used sodium dodecyl sulfate (SDS) to release Tn5 from bound DNA, which enabled maximum DNA recovery. Third, we use META transposome instead Nextera transposome used in other protocols, which avoids half loss due to self-looping during amplification, thus further increasing library size. Specifically, META sequences also serve as a barcode to fragment decontamination, which provides high-sensitivity and precise single-cell chromatin accessibility analysis.

Protocol materials

IGEPAL CA-630 Merck MilliporeSigma (Sigma-Aldrich) Catalog #18896-50ML

Tween 20 Bio-Rad Laboratories Catalog #170-6606-MSDS

Digitonin, 40ul Promega Catalog #G9441

NN-Dimethylformamide anhydrous Merck MilliporeSigma (Sigma-Aldrich) Catalog #D4551-250ML

Troubleshooting

1.2

REAGENT SETUP

1h 30m

Prepare METATAC Reagents

1h 30m

1.1 **△** 5 mL **ATAC** resuspension buffer (ATAC-RSB)

> Mix \perp 50 μ L 1 M Tris-HCl pH 7.5, \perp 10 μ L 5 M NaCl, \perp 15 μ L 1 M MgCl2, and bring the final volume to 45 mL with nuclease-free H2O. Store the buffer at -20 °C for up to several months.

_		1	1
	А	В	С
	Reagents	5 mL	Final conc.
	1 M Tris-HCl pH 7.5	50 μL	10 mM
	5 M NaCl	10 μL	10 mM
	1 M MgCl2	15 μL	3 mM
	Nuclease- free H2O	4925 μL	
	Total	5 mL	

 \perp 50 μ L for each reaction, mix \perp 200 μ L ATAC-RSB with \perp 2 μ L 10% IGEPAL CA630 ☑ IGEPAL CA-630 Merck MilliporeSigma (Sigma-Aldrich) Catalog #18896-50ML
,

🚨 2 μL 10 Tween 20 🔀 Tween 20 Bio-Rad Laboratories Catalog #170-6606-MSDS

, 🚨 2 μL 1% digitonin 🔯 Digitonin, 40ul Promega Catalog #G9441 . Freshly prepare before use.

△ 200 μL Omni-ATAC lysis buffer

А	В	С
Reagents	200 μL	Final conc.
ATAC RSB	200 μL	
10% IGEPAL CA630	2 μL	0.1%
10 % Tween 20	2 μL	0.1%
1% Digitonin	2 μL	0.01%

1.3 Δ 600 μL Omni-ATAC wash buffer

 Δ 150 μ L for each reaction, mix Δ 600 μ L ATAC-RSB with Δ 6 μ L 10% Tween

20. Freshly prepare before use.

А	В	С
Reagents	600 μL	Final conc.
ATAC RSB	600 μL	
20% Tween 20	6 μL	0.1%

1.4 ∆ 1 mL 2 x TD buffer

mix \perp 20 μ L 1 M TAPS pH 8.5, \perp 10 μ L 1 M MgCl2, \perp 200 μ L DMF

NN-Dimethylformamide anhydrous Merck MilliporeSigma (Sigma-Aldrich) Catalog #D4551-250ML

, and bring the final volume to \perp 1 mL with nuclease-free H2O. Store the buffer at -20

°C for up to several months.

А	В	С
Reagents	1 mL	Final conc.
1 M TAPS pH 8.5	20 μL	20 mM

А	В	С
1 M MgCl2	10 μL	10 mM
DMF	200 μL	20%
Nuclease- free H2O	770 μL	

1.5 ∆ 1 mL 2 x STOP buffer

> mix \perp 80 μ L 0.5 M EDTA, \perp 10 μ L 1 M Tris-HCl pH 8.0, \perp 10 μ L 0.1M spermidine, and bring the final volume to 4 1 mL with nuclease-free H2O. Freshly prepare before use.

А	В	С
Reagents	1 mL	Final conc.
0.5 M EDTA	80 μL	40 mM
1 M Tris-HCI pH 8.0	10 μL	10 mM
0.1 M spermidine	10 μL	1 mM
Total	1 mL	

1.6 Δ 50 μL **Assemble META16 transposome** METATAC_Primer_v.1.xlsx

1) Anneal META16 transposon

А	В
Oligos	Sequence
META16-1	GGCACCGAAAA
META16-2	CTCGGCGATAAA
META16-3	GGTGGAGCATAA
META16-4	CGAGCGCATTAA

А	В
META16-5	AGCCCGGTTATA
META16-6	TCGGCACCAATA
META16-7	GCCTGTGGATTA
META16-8	GCGACCCTTTTA
META16-9	GCATGCGGTAAT
META16-10	GCGTTGCCATAT
META16-11	GGCCGCATTTAT
META16-12	ACCGCCTCTATT
META16-13	CCGTGCCAAAAT
META16-14	TCTCCGGGAATT
META16-15	CCGCGCTTATTT
META16-16	CTGAGCTCGTTTT
19 bp ME	5'-/phos/-CTGTCTCTTATACACATCT-3'
META Tranposon	5'-[META sequence]-AGATGTGTATAAGAGACAG-3'

A	В	С
Reagents	Per 50 μL	Final conc.
10 x Annealing Buffer	5 μL	1x
50 μM META16 Transposon	5 μL	5 μΜ
50 μM 19 bp ME	5 μL	5 μΜ
H2O	35 μL	

Mix thoroughly, then run the annealing program (95 °C, 1 min, gradual cooling, -0.1 °C /3s, 700 cycles to 25 °C, hold at 4 °C)

Recipe for 10x annealing buffer (500 mM NaCl, 100 mM Tris-HCl pH 8.0, 10 mM EDTA)

2) Assemble METAT16 transposome

Note

Assembled transposome can be stored at -80 °C for up to six months. Tn5 transposase was expressed in-house from the plasmid pTXB1-Tn5 or purchased from Vazyme (s111-01).

Assembled META16 transposome at a final concentration of 1.25 µM dimer.

Bulk Transposition

1h 30m

Harvest fresh culture in a conical centrifuge tube (15 ml or 50 ml) at room temperature, centrifuge at 500 x g for 5 min at room temperature, then wash twice with 1x PBS pH 7.4, count cell number, stain with Trypan blue, and ensure viability >90%. then aliquot 50, 000 cells to a 200 μ L PCR tube.

20m

Note

In order to have enough nuclei for FACS, we recommend preparing 2-3 replicates, which is enough for 50-60 96-well plates.

Note

Our protocol also works well for cryopreserved samples and nuclei. For the cryopreserved sample, quickly thaw one tube of the cell at 37 °C water bath, then wash once with ice-cold PBS, count cell number, aliquot 50,000 each.

Pellet 50,000 viable cells at 500 x g at 4°C for 5 min in a swing bucket centrifuge, and remove supernatant carefully without disturbing the pellet.

6m

4 Add 50 μ L ice-cold **Omni-ATAC lysis buffer** (step 1.2), pipette up and down 10 times, then incubate on ice for 3 min.

4m

Note

The incubation time depends on cell type, 3 min works well for most samples, but we found for the digestive system sample, incubation needs to extend to 5-10 min to get the periodic nucleosomal pattern.

5 Wash out lysis with 150 μ L of ice-cold **Omni-ATAC wash buffer (step 1.3)** and invert the tube 3 times to mix.

2m

Pellet nuclei at 500 x g for 10 min at 4°C in a swing bucket centrifuge.

11m

7 Then wash one time with 50ul ice-cold Omni-ATAC wash buffer. Pellet nuclei at 500 x g at 4°C for 5min.

8m

8 Transposition in Bulk

50m

8.1 Prepare Transposition mix

A	В	С	D
Reagents	3 Rxn	Per Rxn	Final conc.
2 x TD buffer	37.5 μL	12.5 μL	
META 16 Transposo me	6 μL	2 μL	100 nM
1 x PBS	28.5 μL	9.5 μL	
1% Digitonin	0.75 μL	0.25 μL	0.01%
10% Tween 20	0.75 μL	0.25 μL	0. 1%

- 8.2 Aspirate all supernatant, and avoid disrupting the visible pellet. Then resuspend the cell pellet in 25 μ L of transposition mixture by pipetting up and down 10 times, then transfer to a 1.5 mL Lo-bind tube.
- 8.3 Incubate the reaction at 37°C for 30 minutes in a thermomixer with 1000 RPM mixing.
- 8.4 Add 25 µL 2x Stop buffer to stop transposition and incubate on ice for 10 min.

FACS single nuclei

1h

- 9 Add 50 μ L 0.5% BSA (by dissolving 0.25 g BSA in 50 mL 1x PBS pH 7.4), then add 5 μ L 7-AAD to stain nuclei.
- FACS sort single 7-AAD positive nuclei to a 96-well PCR plate, containing 1 μ L nuclei lysis buffer (10 mM Tris-HCl pH 8.0, 20 mM NaCl, 1 mM EDTA pH 8.0, 15 mM DTT, 0.1% SDS, 60 μ g/mL QIAGEN protease).

Note

If not proceed immediately, seal the plate with Aluminum Sealing Film (Axygen, PCR-AS-600), and store at -80°C for several months without lysis.

Note

All liquid transfer steps can be done with a multichannel pipette or with an automated liquid handler system (e.g., Beckman Biomek FXP liquid handler, Echo 525 acoustic liquid handler system). Here, we use Echo 525 to handle all the liquid transfer steps, which process 20 plates each time.

For cell lysis buffer, we use Echo 525 to aliquot with 384PP_AQ_BP calibration, 45 s/plate.

Amplification

3h 30m

Seal the plate with PCR sealing film (bio-rad, MSB1001), lysis was done by incubating at 65 °C for 15 min.

30m

12 After lysis, add 1 µL 3% Triton X-100 to quench SDS. Spin down in a plate centrifuge, vortex to mix.

20m

Note

For 3% Triton X-100, we use Echo 525 to aliquot with 384PP_AQ_SPHigh calibration. 45 s/plate.

13 **Amplification**

2h

13.1 Prepare preamplification mix

20m

А	В	С	D
Reagents	120 Rxn	Per rxn	Final conc.
2 x High fidelity Q5 master mix	360	3	1x
50 μM META16 primer mix	23.04	0.192	100 nM each
100 mM MgCl2	6	0.05	
Nuclease- free H2O	90.96	0.758	
Cell lysate	NA	2	NA

А	В
Oligos	Sequence
META 16 Primer	5'-[META sequence]-AGATGTGTATAAG-3'

Note

META16 primer sequences see above .

13.2 Aliquot 4 µL above preamplification mix to each well, Spin down in a plate centrifuge, vortex to mix.

45m

Note

For the preamplification mix, we use Echo 525 to aliquot with 384PP_AQ_BP calibration, 2 min/plate.

13.3 Preamplification was incubated as

50m

72°C, 5 min

98°C, 30 s

16 Cycles [98°C, 10 s; 62°C, 30 s; 72°C, 1 min]

72°C, 5 min

4°C hold.

14 **Cell barcoding**

40m

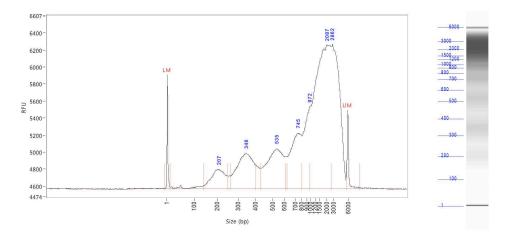
Note

Cell barcoding was realized using a 12 x 8 barcode combination. Premix 12 META16-ADP1 barcodes and 8 META16-ADP2 barcodes into 96 barcode combinations. Detailed sequences see below table.

A	В
Oligos	Sequence
META16- ADP1	5'-CTTTCCCTACACGACGCTCTTCCGATCT-[CB1]-[META sequence]-AGATGTGTATAAG-3'
META16- ADP2	5'-GAGTTCAGACGTGTGCTCTTCCGATCT-[CB2]-[META sequence]- AGATGTGTATAAG-3'
CB1-1	GATATG

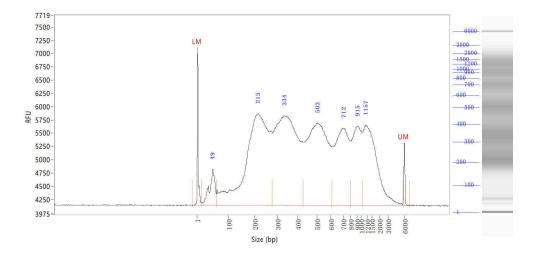
А	В
CB1-2	ATACG
CB1-3	ссетсте
CB1-4	TGCG
CB1-5	GAACTCG
CB1-6	ATGTAG
CB1-7	CCCG
CB1-8	TATGT
CB1-9	GAGTAAG
CB1-10	ATCG
CB1-11	CCTAG
CB1-12	TGACCG
CB2-1	ACTCTA
CB2-2	AGAGCAT
CB2-3	GGTATG
CB2-4	TCGATGC
CB2-5	CTACTAG
CB2-6	TATGCA
CB2-7	CACACGA
CB2-8	GTCGAT

Add 0.45 μL of one of 96 barcode mixes to each well. Incubate as 98°C, 30 s, 5 cycles [98°C, 10 s, 62°C, 30 s, 72°C, 1 min] 72°C, 5 min

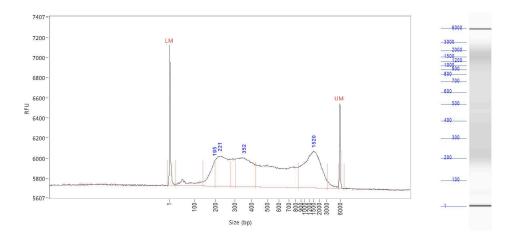


Note

For the cell barcode, we use Echo 525 to aliquot with 384PP_AQ_BP calibration, 30 s/plate.


Pool a whole plate for purification, typical 200 μL/plate for purification. DNA was extracted with ZYMO DCC5.

1h 30m


It's a typical amplicon of GM12878 cells, but the fragment size distribution varies according to different cell types.

For fragment analysis, we use Agilent Fragment analyzer DNF474 kit, only samples with clear periodic nucleosome patterns are used for sequencing.

Wxamplified library showed good periodic nucleosome pattern.

Examplified library showed poor periodic nucleosome pattern.

Library preparation

17 **Library Preparation**

1h 30m

17.1 Prepare Library prep mix

А	В	С	D
Reagents	40 Rxn	Per rxn	Final conc.
2x Q5 master mix	600	15	1x
NEB universal primer(10 μΜ)	20	2	0.67 μΜ
Neb i7 Index primer(10 μΜ)		2	0.67 μΜ
100 mM MgCl2	1	0.1	
Template		10.9	
Total		30	

17.2 Library preparation was done by incubating as 98°C, 30 s
2 cycle [98°C, 10 s, 68°C, 30 s, 72°C, 1 min]
72°C, 5 min

Note

2 cycles of amplification are critical to avoid residual cell barcode primers in purified amplicons causing cell-to-cell contamination.

17.3 Purify with ZYMO DCC5, then purify with 1.1 x SPRI beads to remove primer dimers.

METATAC Library schematic diagram

Sequencing

For sequencing, we sequenced our sample on Illumina Hiseq 4000 or NovaSeq sequencer with 9 Gb/plate.

20 Raw read processing.

Raw Read Preprocessing. For both read 1 and read 2, the first 4 to 7 bases and the following 11 to 13 bases are paired cell barcodes and META sequence, respectively (step 1.6 attachment). We used a custom Python script to parse barcodes and split reads into individual fastq files for each cell, allowing up to one mismatch. Meanwhile, META sequences were annotated to read the name, allowing up to two mismatches. Then we used cutadapt to trim adapter sequences from both ends according to the 19-bp mosaic end (ME) sequence, with parameters -e 0.22 -a CTGTCTCTTATACACATCT and -e 0.22 -g AGATGTGTATAAGAGACAG for both read 1 and read 2. Processed reads were mapped to reference genome with bowtie2 -X 2000 -local -mm -no-discordant -no-mixed. hg38 (GRCh38, v26) reference genome was used for human cells, and mm10 (GRCm38, vM19) reference genome was used for mouse cells. Reads with mapping quality of less than 30 were filtered out from the further analysis. PCR duplicates were identified and removed

with a custom script, according to their positions on the genome and META tags. Pairedend reads were converted to fragments with Tn5 insertion centering correction (R1 start +4 and R2 end 5). Finally, for each cell, contaminated fragments from other cells were removed based on the aligned coordinates, META sequences, and read frequency.