

Mar 12, 2023

© Metagenomic Library Prep from fecal sample lysate

DOI

dx.doi.org/10.17504/protocols.io.rm7vzbob4vx1/v1

Noah Noah Snyder-Mackler¹

¹Arizona State University

smacklabasu Snyder-Mackler

ASU

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.rm7vzbob4vx1/v1

Protocol Citation: Noah Noah Snyder-Mackler 2023. Metagenomic Library Prep from fecal sample lysate . **protocols.io** https://dx.doi.org/10.17504/protocols.io.rm7vzbob4vx1/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: January 31, 2023

Last Modified: March 12, 2023

Protocol Integer ID: 76174

Keywords: Microbiome, Metagenome, Library, Lysate, metagenomic library prep from fecal sample lysate, metagenomic library prep from fecal sample, metagenomic library prep, fecal sample lysate, using illumina dna prep kit, illumina dna prep kit, fecal sample

Disclaimer

dual index sequences here

Nextera 10bp dual index sequences

Abstract

Metagenomic library prep from fecal sample lysate using Illumina DNA prep kit (1/2 reactions).

Attachments

SMack_Lab_nxtra_inde..

18KB

Guidelines

Abbreviations

BLT: Bead-Linked Transposomes

TB1: Tagmentation Buffer 1

MM: Master Mix

TWB: Tagmentation Wash Buffer TSB: Tagmentation Stop Buffer

EPM: Enhanced PCR Mix

SPB: Sample Purification Beads

RSB: Resuspension Buffer

Materials

- PCR plates and covers
- Nuclease-Free water
- 🔀 Illumina® DNA Prep (M) Tagmentation (24 Samples IPB) Illumina, Inc. Catalog #20060060

Bead-Linked Transposomes (BLT)

Tagmentation Buffer 1 (TB1)

Tagmentation Wash Buffer (TWB)

Tagmentation Stop Buffer (TSB)

Enhanced PCR Mix (EPM)

Sample Purification Beads (SPB)

Resuspension Buffer (RSB)

- Freshly prepared 🔯 80% ethanol Fisher Scientific
- Index Adaptors (96)
- Magnetic stand

Troubleshooting

Preparation

1 Add \perp 18 μ L of nuclease-free water and \perp 2 μ L of sample to a PCR plate

Tagmentation Reaction

- Take out TB1 and keep on On ice. Turn on thermocycler to 37 °C
- 3 Multiply by number of samples, for a 96 well plate use x100 and pipet mix together to create MM. Vortex BLT vigorously for 10 seconds to resuspend

Reagent	x1	x100
BLT	5 ul	500ul
TB1	5 ul	500ul

4 Vortex and add \perp 10 μ L of reaction MM to each well

Note

We found this easiest using a repeater with a $\begin{tabular}{c} \bot 0.5 mL \\ \end{tabular}$ tip for 50 aliquots of $\begin{tabular}{c} \bot 10 μL \\ \end{tabular}$

- Pipette mix slowly 5 times using multichannel (should have $400\,\mu$ L of volume in each well
- 6 Cover and seal plate. Then run "TAG" on thermocycler

15m

- Choose the preheat lid option and set to ▮ 100 °C
- Set the reaction volume to 🕹 30 μL
- \$ 55 °C for (00:15:00
- Hold at 🖁 10 °C

- 7 During TAG incubation take out TSB and place at 37 °C and vortex before addition to samples
- Add \perp 10 μ L of TSB to each sample well using repeater with \perp 0.5 mL tip to stop enzymatic reaction

Note

Be careful because buffer is foamy and be sure to pipette mix after addition

- 9 Cover with thick plastic and run "PTC" protocol on thermocycler
 - Choose the preheat lid option and set to ▮ 100 °C
 - Set the reaction volume to Δ 40 μL
 - \$ 55 °C for (00:15:00
 - Hold at 🖁 10 °C
- 10 Place on magnetic stand until beads pellet and discard supernatant

Note

Take out primer plates to thaw at 4 °C

1. Wash 2x with Δ 100 μ L of TWB. Place on magnetic stand until beads pellet + remove and discard supernatant after each wash. After both washes add in another Δ 100 μ L of TWB to plate while on magnetic stand to prevent beads from drying while you prep PCR mix (don't pipette mix)

Make PCR Master Mix

1h 10m 15s

15m

- 12 Take out EPR and thaw on ice
- 13 1. Make master mix, multiply by number of samples (use x100 for a 96 well plate) (use a 5 ml tube for a full plate of MM)

Reagent	x1	x100
EPR	11 ul	1,056 ul
Nuclease free water	11 ul	1,056 ul

- 14 Place on magnetic stand until beads pellet + remove and discard supernatant (TWB)
- 15 Add \perp 20 μ L of MM using repeater and \perp 5 mL attachment
- 16 Add in \triangle 2.5 μ L of i5 and i7 primers
- 17 Pipette mix, cover with thick plastic and run "BLT" 12 cycle on thermocycler ((2) 01:00:00

1h 10m 15s

- Choose the preheat lid option and set to ▮ 100 °C
- \$ 68 °C for ♠ 00:03:00
- \$ 98 °C for ♠ 00:03:00
- 12 cycles of:

- **\$** 68 °C for **♦** 00:01:00
- Hold at 🖁 10 °C

Note

- 1. Take out SPB and RSB while PCR is running to thaw
- 2. You may need to place the RSB on the thermocycler at 👢 37 °C to get it to thaw

Bead Clean Up

5m

- Grab a new PCR plate and add $\underline{\bot}$ 60 μ L of nuclease-free water using a multichannel pipette and $\underline{\bot}$ 45 μ L of SPB using a repeater with a .5 ml tip to each sample well
- After PCR is complete spin down plate \rightarrow place on magnetic stand \rightarrow transfer $25 \,\mu$ L of supernatant to new PCR plate containing water and SPB. Discard old plate.
- Pipette mix 10 times and incubate for \bigcirc 00:05:00 at Room temperature During this incubation take out a new PCR plate and add \bot 15 μ L of SPB to each well using a repeater
- 21 After the incubation place plate on magnetic stand until beads pellet
- Transfer \perp 125 μ L to the new plate containing the \perp 15 μ L of SPB. Discard old plate.
- Pipette mix 10 times and incubate for 00:05:00 at Room temperature
- 24 Place on magnetic stand + remove and discard supernatant

Ethanol Washes

(3m 30s

5m

- 25 Keep plate on magnetic stand and prepare fresh 80% ethanol
- While keeping the plate on the magnetic stand add $\underline{\underline{}}$ 200 $\mu \underline{L}$ of 80% ethanol without mixing
- 27 Incubate 00:00:30 + remove and discard supernatant. Repeat ethanol wash and discard supernatant.

Note

Use a 4 20 µL pipette to remove as much ethanol as possible

28 Air dry while on magnetic stand (00:03:00)

3m

Note

be sure to not let beads crack

Elution 2m

- 29 Remove beads from stand and add 🚨 32 μL of RSB to beads
- 30 Pipette mix to resuspend and incubate at Room temperature for 00:02:00

2m

31 Place on magnetic stand and transfer supernatant to new and final sturdy PCR plate. Seal, label, and store!