May 14, 2018 Version 1

O Measuring specific leaf area and water content V.1

DOI

dx.doi.org/10.17504/protocols.io.p3tdqnn

Etienne Laliberté¹

¹Université de Montréal

Plant Functional Ecology... Canadian Airborne Biodi...

Etienne Laliberté

Université de Montréal

DOI: <u>dx.doi.org/10.17504/protocols.io.p3tdqnn</u>

External link: www.caboscience.org

Protocol Citation: Etienne Laliberté 2018. Measuring specific leaf area and water content. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.p3tdqnn</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development We are still developing and optimizing this protocol.

Created: May 11, 2018

Last Modified: April 22, 2023

Protocol Integer ID: 12115

Abstract

Here we describe the standardised protocol used by the <u>Canadian Airborne Biodiversity Observatory</u> (CABO) to measure leaf water content and specific leaf area, using the <u>WinFOLIA</u>[™] software (<u>Régent Instruments</u>). These leaf area and water measurements are done on a subset of leaves from the same bulk leaf sample used to measure <u>leaf spectral reflectance and transmittance</u>. Briefly, after removing their petioles, fresh leaves are weighed, rehydrated for 6 h, scanned for total leaf area and weighed again; they are then oven-dried at 65 °C for 72 h, and weighed one last time. This allows us to measure leaf dry matter content and its complement, leaf water content, as well as leaf relative water content. Leaf area measurements are used to estimate specific leaf area, a key functional trait central to the leaf economics spectrum. Specific leaf area allows us to a leaf area basis.

Guidelines

Equipment

- Sartorius Secura 213-1S 1 mg (3 decimal places) balance or other similar balance
- Sartorius Secura 1102-1S 0.01 g (2 decimal places) balance or other similar balance
- Canon LiDE 220 portable scanner or other suitable flatbed scanner
- WinFOLIA[™] leaf area software (Régent Instruments Inc.)
- Forced air drying oven
- Dessicator
- <u>RezChecker</u> color/resolution target (optional)

Consumables

- Paper towels
- Paper envelopes and/or bags
- Stapler and staples (for paper bags)
- Sealed plastic bags
- Weighing trays

Leaf Sample Selection And Preparation

1 Select a sub-sample of leaves from the same bulk fresh leaf sample on which <u>spectral</u> <u>reflectance and transmittance</u> was measured.

Note

The selected leaves do not have to be the same ones used for spectral measurements, but should be as similar as possible to those.

Note

Select enough leaves to entirely fill the scanner bed. Leaves larger than the scanner bed should be cut and scanned in multiple files.

2 Cut the petiole of each leaf that will be scanned.

Note

For a compound leaf, the petiole is the extension of the rachis beyond which there are no leaflets. The rachis should remain on the leaf, since it is the functional analogue of the midrib vein for a simple leaf.

Record Leaf Fresh Mass

3 Immediately weigh the selected leaves (with petioles removed) and **record the leaf fresh mass** (g).

Note

This fresh leaf mass should be done as close as possible to the spectral measurements; keep the fresh leaves in a sealed bag in which you have breathed into to prevent them from losing water.

Note

Use a 3-decimal place balance if possible. A 2-decimal place may be sufficient for very large leaves.

Leaf Rehydration

4 Store the selected leaves in a sealed plastic bag in which you have breathed into. Add a piece of damp paper towel (use deionised water).

Note

Label the sealed plastic bag with the sample ID and/or a barcode label.

5 Store the sealed sample in the dark, in the fridge (never a freezer) or a chilled cooler for **12 h**.

Record Leaf Rehydrated Mass

- 6 Gently pat dry the rehydrated leaves to remove surface water.
- 7 Weigh the rehydrated leaves as a whole and **record rehydrated leaf mass** (g).

Note

Use a 3-decimal place balance. A 2-decimal place balance can be sufficient for very large leaves.

Create Working Folder

8 Go the the shared 'leafscans' CABO Google Drive Folder for your project.

Note

If you do not yet have a shared Google Drive folder for your project, contact the CABO data manager to create one (<u>etienne.laliberte@umontreal.ca</u> or <u>jeremy.goimard@umontreal.ca</u>).

9 Create a new folder named *YYYY-MM-DD-SiteID* (without spaces) within that 'leafscans' folder.

📜 🖂 📜 🗧 🛛 leafscans	
Fichier Accueil Partage Affich	age
← → 👻 🛧 📙 « Google Drive	> CABO > 2018-BeauchampRioux-MSc-UdeM > le
★ Accès rapide ■ Bureau	Nom
 Téléchargements Documents 1 élément 	* * _ v <

The 'Site ID' should be the same as the Site ID defined in the field for that site.

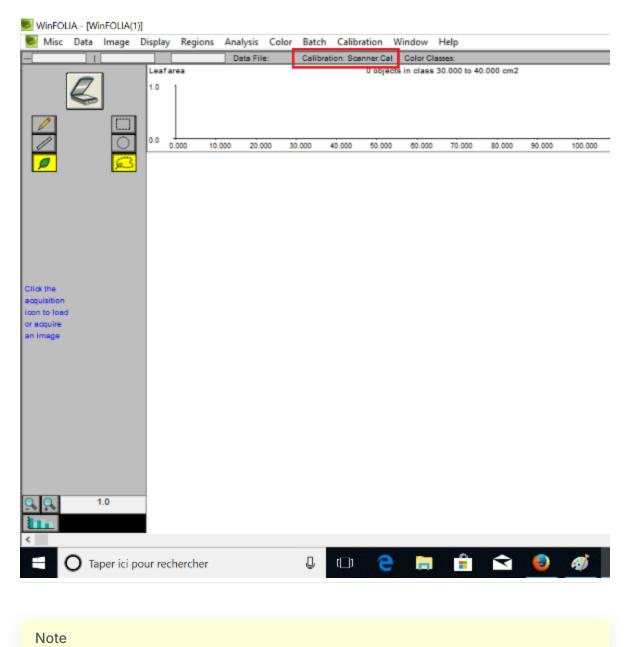
Note

This working folder is where the data file and all acquired images for that site on that day will be stored.

WinFOLIA Set-Up

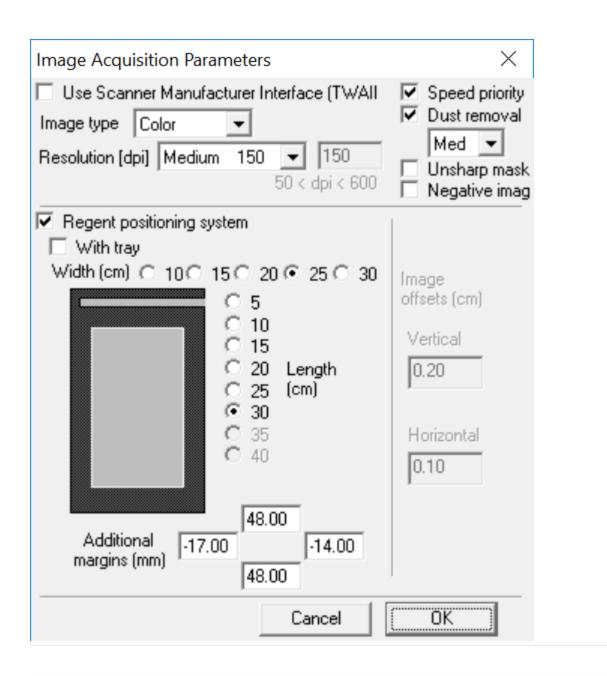
10 Open WinFOLIA.

11 Choose the same settings as the last time WinFOLIA was run.


WinFOLIA				
W	in ac	70	CJA	Copyright 1: Regent Instrumer
Reg	2016Ь	32-Bit	Technical support:	techsup@rege
The sa	me as th	ou want to use? e last time WinFO ou know the kind)LIA was run d of analyses that were done	previously and or
C Default	settings	 If for Scanner C for Camera 	🔲 Tablet Mode	
Choose it if:	- You w - WinF(ill be scanning le DLIA is crashing (WinFOLIA or are learning it us aves for the first time with your current settings nich settings to use	sing our demo ima
				[

12 Select the scanner to use; it should start with WIA...

Sélectionner une source	\times
Sources : CanoScan LiDE 220 20.0 (32-32) Integrated Camera TWAIN 1.0 (32-32) WIA-CanoScan LiDE 220 1.0 (32-32)	Sélectionner Annuler


The scanner drivers must be installed first. Choose the scanned starting with WIA-...

13 Ensure that the scanner calibration file is loaded.

If the scanner calibration file is not loaded, refer to the WinFOLIA manual to load it.

14 Ensure that the *Image > Acquisition Parameters...* are set as shown in the image below.

The parameters shown are for the Canon LiDE 220 portable scanner used in the field, and may differ on another scanner.

Note

Although the leaf area analysis is done on greyscale images, **scan in color** at **150 dpi**. For very small leaves, a higher resolution (e.g. 300 dpi) might be required. 15 Ensure that the *Analysis* > *Parameters...* are set as shown in the image below.

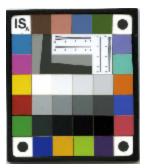
Parameters ×					
Speed, Memory & Feedbacks Slower MoreMemory MaxFeedbacks 💌					
Lasso Resolution Medium 👻					
Reject objects truncated by Analysed Region boundary					
When opening an analysed image Load analysis & settings 💌					
Landscape to Portrait image after acquisition					
Zoom image to "Fit" after acquisition					
Save image before acquiring another (with its analysis)					
Sample Identification User Sample 00001					
Cancel OK					

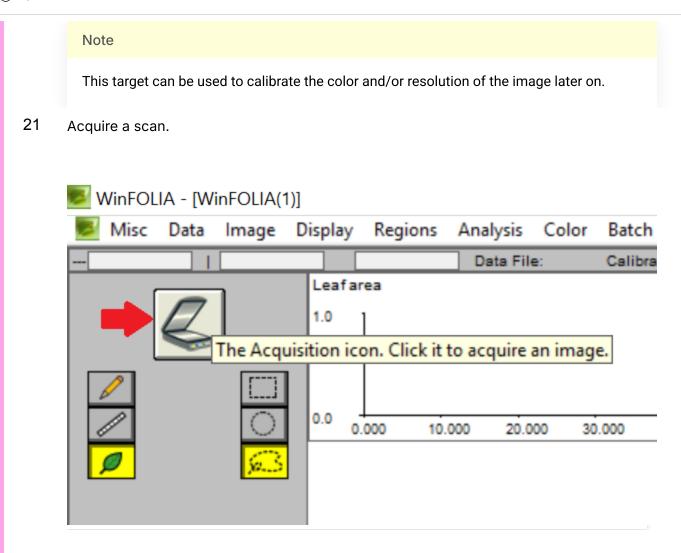
16 Ensure that the *Analysis* > *Measurements...* are set to *Total Are Only*.

Measurements		×
 Total Area Or Basic Morphol Leaf Morphol 	logy	☐ Holes area Not a hole if < 2 px
Petiole Length	Straight to lowest point 💌	Width Horizontal
Blade width at	50.0 & 90.0 % of height	
Lobe angle at	10.0 & 25.0 % of height	Fractal Passes Display sec
🗖 Envelope	Elasticity	Color Aggregation Analysis
Teeth	Sensitivity [0.0-1.0]	
	Car	ncel OK

Create New Data File

17 Create a new data file using *Data > New File...*

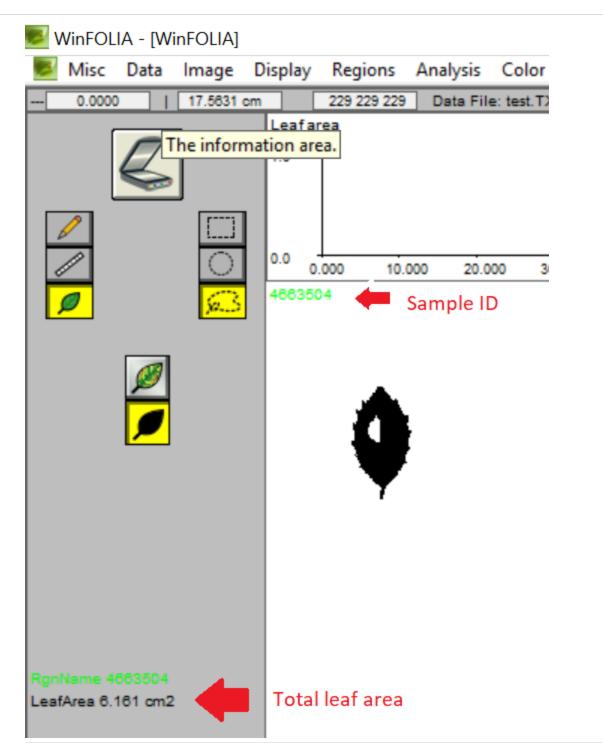

🗾 WinFOL	IA - [W	inFOLIA(1	1)]				
📕 Misc	Data	Image	Display	Regions	Analysis	Color	Batch
	1	New File.		F	Data Fil	e:	Calibra
ſ	(Open File					
	(Close File					
	9	Saving Op	otions				
			0.0	000 10	.000 20.0	00 30	0.000


18 Save the data file as *YYYY-MM-DD-SiteID.txt* in the 'leafscans' CABO shared Google Drive folder for your project.

Organiser 👻 Nouveau do	e Drive > CABO > 2018-BeauchampRioux-I	
 Bureau Téléchargements Documents Images Google Drive Captures d'écran 	* Nom	Modifié le Aucun élément
<u>N</u> om du fichier : 2018-05-1 <u>T</u> ype : Text files (14-GrosBoisFieldEL.TXT (*.TXT)	

Leaf Scan

- 19 Position the leaves to fill the scanner bed:
 - position leaf apex at the top of the image
 - leave margins of scanned bed free
 - ensure leaves are not folder
 - ensure leaves do not overlap each other
- 20 Add the RezChecker target in the top left section of the image (optional; if target is available).



22 Enter the Sample ID, and name of operator.

🗾 WinFOL	LIA - [Wi	nFOLIA]							
📕 Misc	Data	Image	Display	Regions	Analysis	Color	Batch	Calibr	ation
9.808	5	5.7925 c		234 233 234	Data File	e:	Calibrati	ion: Sca	
	Ł]	Leafa	rea					0 obj
		\odot	0.0	.000 10.0	00 20.0	00 30.	000 4	40.000	50.0
Image selection in process				٥					

The 'Sample ID' should be **exactly** the same sample ID of the bulk fresh leaf sample, as defined in the field.

23 Click anywhere on the scanned image to start the analysis on the whole image, or select a particular region for analysis, and **record the total leaf area** (cm²).

The total leaf area (cm2) for that image gets automatically saved in the data file.

If the leaf sample requires multiple scans, repeat steps 15-17 as many times as required. In that case, add an identifier at the end of the Sample ID (e.g. 4663504-A, 4663504-B).

24 Save the analysed image(s) in the Google Drive working folder.

💌 WinFOL	IA - [W	inFOLIA]					
📕 Misc	Data	Image	Display	Regions	Analysis	Color	Batch
0.2880			rigin				
	P	Ac	quisition	Parameters	i		
	6	Ac	quire Ima	ge			
		Sa	ve Image	(With Anal	ysis)		
	Background Unevenness Compensation					>	
Ø		ø	466350	4			
				Q	•		

25 Name the image file using the sample ID.

Organiser 👻 Nouveau de	ossier		
 Google Drive Captures d'écran Public WinFOLIA WinFOLIA Reg 2016b 33 CneDrive 	P-bit 28M	^	Modifié le Aucun élément
Nom du fichier : 4663504 Iype : TIFF files			

Record Leaf Dry Mass

26 Transfer the scanned leaves in a labelled paper envelope or small paper bag. Note Stape the envelope or paper bag to prevent leaves from falling out. 27 Dehydrate the leaves in forced air drying oven at 65 °C for 72 h. 28 Ideally, cool the samples down to room temperature in a dessicator prior to weighing. Note If no dessicator is available, lower the drying oven temperature to room temperature but with forced air still on while samples are being weighed. 29 Weigh the dried leaves and record leaf dry mass (g). Note Use a 3 or 4-decimal-place balance, depending on sample size. A 2-decimal place balance might be sufficient for very large leaves.

Close Data File

30 Once all leaf samples for that site/day are scanned and analysed for area using WinFOLIA[™], close the data file using *Data* > *Close File*.

Calculating Specific Leaf Area (SLA) and Leaf Mass per Area (LMA)

```
31 Specific leaf area (SLA; m^2 kg^{-1}) is calculated as:
```

 $SLA = (LA \div LDM) \div 10$

where

LA is the total area of the leaf sample (cm^2) LDM is the total leaf dry mass (g).

Leaf mass per area (LMA; g m^{-2}), the inverse of SLA, is calculated as:

LMA = LDM ÷ (LA ÷ 10 000)

Calculating Leaf Dry Matter Content (LDMC) and Leaf Water Content (LWC)

32 Leaf dy matter content (LDMC; mg g^{-1}) is calculated as:

 $LDMC = (LDM \times 1000) \div RLM$

where

LDM is the total leaf dry mass (g) RLM is the rehydrated leaf mass (g)

Leaf water content (LWC; mg g^{-1}), the complement of LDMC, is calculated as:

LWC = 1000 - LDMC

Calculating Leaf Relative Water Content (RWC) and Equivalent Water Thickness (EWT)

33 The leaf relative water content (RWC; %) is expressed as:

```
RWC = [ ( LFM - LDM) ÷ ( RLM - LDM) ] × 100
```

where

LFM is the total leaf fresh mass (g), LDM is the total leaf dry mass (g), RLM is the rehydrated leaf mass (g).

Equivalent water thickness (EWT, $g cm^{-2}$, or $cm^{3} cm^{-2} = cm$) is calculated as:

 $EWT = (LFM - LDM) \div LA$

where

LA is the total leaf area (cm^2).

Note

The relative water content expresses the actual water content of a given amount of leaf relative to the amount of water it contains in its fully hydrated state. It is one measure of leaf water stress at the time when spectral measurements were made.

Equivalent water content expresses the amount of water per leaf area, also at the time when spectral measurements were made.