
Oct 18, 2019

Measurement of XylE (Catechol 2,3-Dioxygenase) enzyme activity by microplate reader

DOI

dx.doi.org/10.17504/protocols.io.7suhnew

Ji Gao¹

¹Tsinghua University

Ji Gao

Tsinghua University

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.7suhnew

Protocol Citation: Ji Gao 2019. Measurement of XylE (Catechol 2,3-Dioxygenase) enzyme activity by microplate reader. **protocols.io** https://dx.doi.org/10.17504/protocols.io.7suhnew

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: September 30, 2019

Last Modified: October 18, 2019

Protocol Integer ID: 28212

Keywords: microplate reader, enzyme activity by microplate reader, dioxygenase, simple measurement of xyle, measurement of xyle, enzyme activity, dihydroxybenzene, product of the enzyme, enzyme, catechol, photometric mode of microplate reader, xyle

Abstract

Simple measurement of XyIE (Catechol 2,3-Dioxygenase) enzyme activity by microplate reader. Catechol 2,3-Dioxygenase can catalyze catechol (1,2-Dihydroxybenzene) to 2-HMS, which has a high absorbance at 377 nm, so we may use photometric mode of microplate reader to measure the concentration of 2-HMS, product of the enzyme.

catechol

O₂

$$(2Z,4E)$$
-2-hydroxy-6-oxohexa-2,4-
dienoate

H+

 O_{2}
 O_{2}
 O_{2}
 O_{2}
 O_{3}
 O_{4}
 O_{4}
 O_{5}
 O_{7}
 O_{8}
 O_{1}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{4}
 O_{5}
 O_{5}
 O_{6}
 O_{7}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O_{8}
 O_{1}
 O_{1}
 O_{2}
 O_{3}
 O_{4}
 O_{5}
 O_{5}
 O_{5}
 O_{7}
 O_{8}
 O_{8}

Guidelines

This is part of a tryout for our iGEM project.

The microplate we used is listed here.

Perform the measurement at \$\mathbb{\m

Materials

MATERIALS

2 12-Dihydroxybenzene Adamas-beta Catalog #17253

Corning[™] 96-Well Clear Bottom Black or White Polystyrene Microplates **Fisher** Scientific Catalog #07-200-565

Troubleshooting

Safety warnings

Catechol can be hazardous if not properly operated. Please refer to https://pubchem.ncbi.nlm.nih.gov/compound/catechol#section=Safety-and-Hazards

Before start

Use [M] 100 millimolar (mM) catechol water solution as stock, and use [M] 10 millimolar (mM) as working solution.

We use LB cell culture (BL21 strain in our project) to perform measurement.

Add cell culture of a good state (logarithm phase) to 96-well plate.

Manual steps

Add \perp 100 μ L cell culture per well.

Note

It is recommanded to use replicates and controls to avoid mistakes or deviation.

2 Turn on the microplate reader and computer. Run the software to set the protocol and plate layout.

Protocol for the instrument

3 Shake the plate for 600:00:05 at 600 rpm .

- 4 Measure the absorbance of cell culture at 600 nm as the estimation of cell amounts.
- 5 Measure the absorbance of cell culture at 377 nm as the baseline of A377 before the reaction.
- 6 Plate out and add 4 2.5 µL catechol ([M] 10 millimolar (mM)) to every well, then plate in immediately.

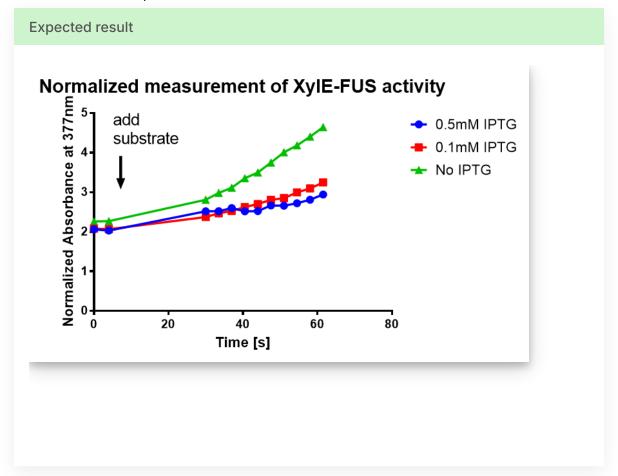
Note

The working concentration of substrate is [M] 0.25 millimolar (mM) here. Other working concentration could also work.

7 Shake the plate for 600:00:05 at 600 rpm .

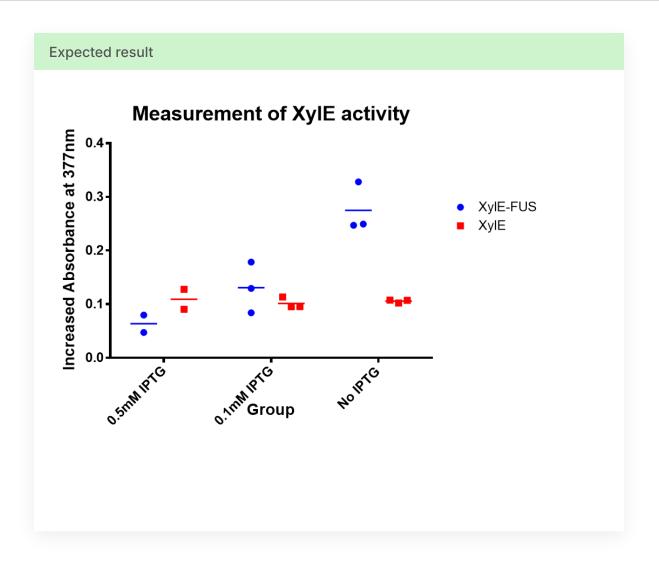
Measure the absorbance of cell culture at 377 nm, continuously (like 00:00:10 per reading) or after a certain period of time (like 00:01:30).

Manual steps


9 Export the data from the software.

Safety information

Properly dispose of the contaminated cell culture and microplates!


Normalize the A337 value by optical density at 600 nm.

Make a Time-A377 plot like this:

Or simply substract the absorbance before the reaction from the value after a specifc period of time:

