Oct 17, 2019 Version 3

Measles virus TaqMan RT-PCR (F gene; no longer in regular use; see Guidelines) V.3

DOI

dx.doi.org/10.17504/protocols.io.8b9hsr6

Mitchell Finger¹, Michael Lyon¹, Judy A Northill¹, Ian M Mackay¹

¹Public Health Virology, Forensic and Scientific Services

Public Health Virology, F...

lan M Mackay

Public Health Virology, Forensic and Scientific Services

DOI: dx.doi.org/10.17504/protocols.io.8b9hsr6

Protocol Citation: Mitchell Finger, Michael Lyon, Judy A Northill, Ian M Mackay 2019. Measles virus TaqMan RT-PCR (F gene; no longer in regular use; see Guidelines). **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.8b9hsr6</u>

Manuscript citation:

Smith G. (2010) Measles Virus. In: Schuller M., Sloots T., James G., Halliday C., Carter I. (eds) PCR for Clinical Microbiology. Springer, Dordrecht

License: This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: October 17, 2019

Last Modified: October 17, 2019

Protocol Integer ID: 28769

Abstract

- This real-time TaqMan-MGB RT-PCR protocol aimed to amplify measles virus (MeV) strains and not other viruses.
- Michael Lyon and Mitchell Finger designed the assay in 2009 using Primer Express software.
- The method was later published by Greg Smith in 2010 (see below).
- The assay targets the fusion (F) gene region and is designed as a qualitative test for investigating MeV infection of humans.
- This was a past assay that we no longer in use. For our favoured Measles virus TaqMan test, please refer to the MeV N TaqMan protocol.

Materials

STEP MATERIALS

X SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Protocol materials

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Before start

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol and with PCR in general.

Oligonucleotide sequences

1

ſ	Name	Sequence 5'-3'
ſ	Primer Measles MGB FP	GCTCAAATTGCTCAGATACTATACAGAAA
Primer Measles MGB RP GCAGATATGGGGTCC		GCAGATATGGGGTCCCGTAA
	Probe Measles MGB Probe	FAM - CCTGTCATTATTTGGCC - MGBNFQ

FP-forward primer; MGB-minor groove binder; NFQ-non-fluorescent quencher; RP-reverse primer

Reagents

2

X SuperScript[™] III Platinum[™] One-Step qRT-PCR Kit Life Technologies Catalog #11732088

Reaction set-up

3 The assay has been used on both a Rotor-Gene 6000 and a Rotor-Gene Q real-time thermocycler

Prepare sufficient mix for the number of reactions.

Include a suitable 'dead volume' as necessary if using a robotic dispenser.

Reagent	Volume (µl) x1	Final reaction concentration
Nuclease-free water	4.45	N/A
Measles MGB FP 150pmol/µl	0.04	300nM
Measles MGB RP 150pmol/µl	0.04	300nM
Measles MGB Probe 100pmol/µl	0.03	155nM
2X Reaction Mix ¹	10	1X
SuperScript® III/Platinum® <i>Taq</i> Mix ¹	0.4	1X
ROX Reference Dye (25µM)	0.04	0.05µM
Template	5	N/A
TOTAL	20	

 $1-Superscript^{\mathsf{TM}}\,\mathsf{III}\,\mathsf{Platinum}^{\mathsf{TM}}\,\mathsf{One}\text{-step}\;\mathsf{qRT}\text{-}\mathsf{PCR}\;\mathsf{kit};\,\mathsf{MGB}\text{-minor}\;\mathsf{groove}\;\mathsf{binder}$

• Dispense 15µL to each reaction well.

- Add 5µL of template (extracted RNA, controls or NTC [nuclease-free water]).
- Total reaction volume is 20µL

Amplification

4

_	50°C	5min	1X
_	95°C	2min	1X
_			
_	95°C	3sec	40X
	60°C	30sec ¹	

1-Fluorescence acquisition step

Result Analysis

- 5 The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:
 - A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
 - A suitable level of fluorescence intensity as measured in comparison to a positive control (y-axis)
 - A defined threshold (C_T) value which the fluorescent curve has clearly exceeded (Fig.1 arrow), which sits early in the log-linear phase and is <40 cycles
 - A flat or non-sigmoidal curve or a curve that crosses the threshold with a C_T >40 cycles is considered a negative result.
 - NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.