


Sep 24, 2019

# Marchantia chloroplast transformation

DOI

dx.doi.org/10.17504/protocols.io.4v9gw96



# Eftychis Frangedakis<sup>1</sup>, Kasey Markel<sup>2</sup>

<sup>1</sup>University of Cambridge; <sup>2</sup>University of California, Davis

**OpenPlant Project** 



#### Eftychis Frangedakis

University of Cambridge, Plant Sciences

## Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS



DOI: https://dx.doi.org/10.17504/protocols.io.4v9gw96

**Protocol Citation:** Eftychis Frangedakis, Kasey Markel 2019. Marchantia chloroplast transformation. **protocols.io** <a href="https://dx.doi.org/10.17504/protocols.io.4v9gw96">https://dx.doi.org/10.17504/protocols.io.4v9gw96</a>



**License:** This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: June 28, 2019

Last Modified: September 24, 2019

Protocol Integer ID: 25249

Keywords: marchantia chloroplast transformation biolistic, marchantia, transformation

### **Troubleshooting**



- 1 Before tranformation place in a glass petri dish (Fig. 1-1) the macro-carrier holders (Fig. 1-2), macro-carriers (Fig. 1-3), stopping screens (Fig. 1-4) and ruptures discs (Fig. 1-5) and autoclave (Fig. 1-6 and 7)
- 2 DNAdel<sup>TM</sup> nanoparticles are supplied as a 50 mg/mL suspension in binding buffer. To dissociate any aggregates prior to use, agitate the suspension, sonicate briefly for 30 s using an ultrasonic water-bath sonicator, vortex for 5 s and repeat.
- 3 Use 0.5 mg of nanoparticles per transformation.
- 4 Dilute DNAdel<sup>TM</sup> nanoparticles into binding buffer to final concentration 30 mg/mL. For example, for 3 shots, mix 30 μL of 50 mg/mL DNAdelTM nanoparticles with 20 μL Binding Buffer (Seashell Technologies) into a 1.5 mL centrifuge tube.
- 5 Add 1.5-2 µg of plasmid DNA per shot planned. For example for 3 shots add 4.5-6 µg of plasmid DNA.
- 6 Add an equal volume of Precipitation Buffer (Seashell Technologies) (total volume of DNAdel<sup>TM</sup> nanoparticles plus volume of Binding Buffer plus volume of plasmid DNA), vortex and incubate at room temperature for 3 min.
- 7 Centrifuge at 8000 xg for 10 s, discard supernatant, and wash the DNA coated DNAdelTM nanoparticles with 500 µL ice cold 100% EtOH.
- 8 Centrifuge at 8000 xg for 10 s again, discard supernatant, and resuspend the nanoparticles in 7 μL of 100% EtOH per bombardment planned. To resuspend the nanoparticles briefly sonicate using an ultrasonic water-bath sonicator. Usually two rounds of 5 s sonication.
- 9 Pipette 7 µl of DNA coated nanoparticles in the center of each macro-carrier and leave to dry (Fig. 2A). Spread across the center of macro-carrier surface with the use of a sterile pipette tip.
- 10 Two plates with 7 day old sporelings should be used per contruct transformation (Fig. 2B)
- 11 Using sterile tweezers place the stopping screen into the macro-carrier launch assembly (Fig. 2C).
- 12 Using sterile tweezers place the DNA loaded macro-carrier) into the macro-carrier launch assembly (Fig. 2D).

- 13 Screw the macro-carrier holder (with the plasmid DNA loaded macro-carrier) on top of the macro-carrier launch assembly (Fig. 2E).
- 14 Load the rupture disk into the retaining cup using sterile tweezers (Fig. 2F and G).
- 15 Screw firmly the retaining cup with the rupture disk onto the gas acceleration tube at the top of the bombardment chamber.
- 16 Place the macro-carrier launch assembly into the bombardment chamber, second position from the top, and close the door (Fig. 2H).
- 17 Place the opened plate with the sporelings on the target shelf (Fig. 2H).
- 18 Press the vacuum button (second red button from the left) to "vac" position until vacuum reaches 27-28 inches Hq and immediately move button to "hold" position. Then keep the fire button pressed until rupture disk bursts (pressure reaches ~1000 PSI) and then release the fire button.
- 19 Release the vacuum.
- 20 Bombard each plate twice (we observed increased efficiency with the second bombardment).
- 21 Remove the plate from the chamber.
- 22 Unload macro-carrier launch assembly and rupture disk retaining cup.
- 23 After finishing, tape the plate and palce back in growth chamber for two days.
- 24 Using a sterile scalpel transfer the sporelings on a selection plate conatining 500µg/mL spec

25

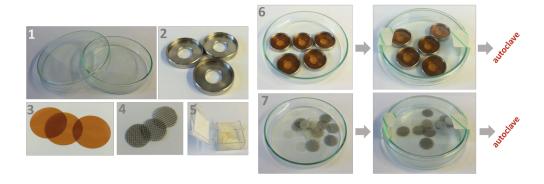



Figure 1

26

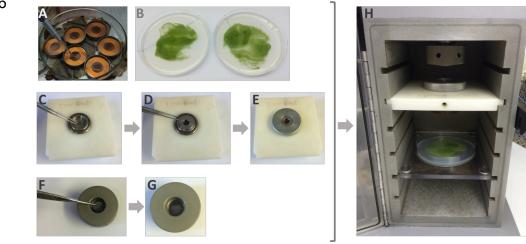



Figure 2

27

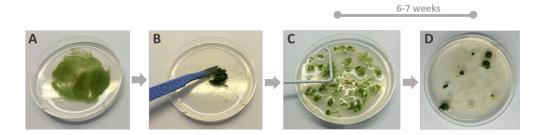



Figure 3

