Jun 06, 2019 Version 2

Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity V.2

PLOS One

DOI

dx.doi.org/10.17504/protocols.io.x7pfrmn

Ayush Alag¹ ¹The Harker School

Ayush Alag

DOI: dx.doi.org/10.17504/protocols.io.x7pfrmn

External link: https://doi.org/10.1371/journal.pone.0218253

Protocol Citation: Ayush Alag 2019. Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene signature to diagnose clinical reactivity. **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.x7pfrmn</u>

Manuscript citation:

License: This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: February 15, 2019

Last Modified: June 06, 2019

Protocol Integer ID: 20431

Keywords: Machine Learning, Food Allergy, DNA Methylation, Gene Signature

Abstract

Current laboratory tests have a less than 50% accuracy in distinguishing between people who have food allergies (FA) and those who are merely sensitized to foods, resulting in the use of expensive and potentially dangerous Oral Food Challenges. Our study presents a purely-computational machine learning approach, conducted using DNA Methylation (DNAm) data, to accurately diagnose food allergies and find genes that are strong biomarkers of the disease.

We built two deep learning classifiers with twelve CpG-input features each that achieved perfect accuracy and an AUROC of 1 on the completely hidden cross-validation cohort. In addition, 24 additional classifiers were created that each had an average cross-validation accuracy of 98.35%. These 26 classifiers yielded a total of 18 unique CpGs, which mapped to 13 genes that are strong epigenetic biomarkers of FA.

Biological enrichment on the 13-gene signature yielded new insights. Notably, our FA-discriminating genes were strongly associated with the immune system, which helps validate our findings. Seven of the 13 genes overlapped with previous food-allergy and DNAm studies.

Previous studies have also created a perfect classifier for this dataset, but they used a 96-CpG input feature set built on both data-driven and a priori biological insights. Our study is an improvement on previous work because it maintains a perfect classification accuracy using only 18 highly discriminating CpGs (0.005% of the total available features). In machine learning, simpler models, as used in our study, are preferred over more complex ones (all other things being equal).

In addition, our completely data-driven approach eliminates the need for \textit{a priori} information and allows for generalizability to DNAm classification problems in other disease areas, which may result in novel gene associations or accurate diagnostic tests for those diseases.

Guidelines

The DNA Methylation data analysis has been done using the Java programming language. To follow the steps it is best to create an Eclipse project.

Before start

1. Download the Eclipse IDE (<u>https://www.eclipse.org/downloads/</u>)

Create an Eclipse project. Download weka jar files from <u>https://www.cs.waikato.ac.nz/ml/weka/downloading.html</u>. The Eclipse project should have the src files with the Java code downloaded in the previous step. Create a directory extjar and put the two reference jar files from Weka (weka-src.jar and weka.jar). Download RBFNetwork.jar from <u>https://jar-download.com/artifact-search/RBFNetwork</u> and add it to the extjar directory. Download libsvm.jar from <u>https://jardownload.com/download-handling.php</u>. Download the data.jar file and place it within the main project. This directory should have the input and output folders with many sub folders. The doc folder is optional and creates the generated JavaDoc for the project. JavaDoc can be generated by going to Eclipse → Project → Generate JavaDoc.

- 2 Next, we will validate that the CpG data that has already been separated into Food Allergy, Sensitized, and Non-Allergic samples have been downloaded correctly. Expand the data/input/gse59999 folder and verify that there are three files:
 - allergy-59999-datasets.txt 215 MB contains 30 rows by 405,659 columns
 - nonallergic-59999-datasets.txt 98.9 MB contains 14 rows by 405,659 columns
 - sensitized-59999-datasets.txt 215 MB contains 30 rows by 405,659 columns

From within Eclipse, run the main program for com.allergezy.fa.util.FileUtil. You should see the output shown below.

Note the number of rows and columns and the validation check.

InMemoryFileReader::Total number of lines data//input/gse59999/allergy-59999-datasets.txt =30 Allergy file has .. 30 rows. Number of columns = 405659ID_REF cg00000029 cg27666123 InMemoryFileReader::Total number of lines data//input/gse59999/sensitized-59999-datasets.txt =30 Allergy file has .. 30 rows. Number of columns = 405659cg27666123 ID_REF cg00000029 .. InMemoryFileReader::Total number of lines data//input/gse59999/nonallergic-59999-datasets.txt =14 Allergy file has .. 14 rows. Number of columns = 405659ID_REF cq00000029 cq27666123 .. Allergy and Sensitized column match = true Allergy and Non-allergic column match = true

The research was conducted using a dataset found in the Gene Expression Omnibus (GEO)under accession id GSE59999. The 71 patient samples in this dataset consisted of 29 patients with FA (tested positive on OFCs), 29 patients who were sensitized but not food-allergic, and 13 patients who were neither sensitized nor allergic. Each sample is associated with a DNAm profile that was taken from mononuclear blood cells and consisted of normalized Beta values ranging from 0 (completely unmethylated) to 1 (fully methylated) at 405,658 CpG islands distributed across the genome.

3 In this step, we will create 8-fold test/train/hidden samples.

The 58 samples are randomly split into three datasets: 40 samples for training, 10 samples for testing, and 8 completely hidden samples for cross-validation. Half of the samples in each of the three datasets were children with food allergies and the other half were those that were food-sensitized but not food-allergic. To avoid potential bias, we created eight random splits, shuffling the samples across the three datasets each time such that each of the 58 samples was in the hidden dataset at least once.

The logic is implemented in com.allergezy.fa.kfold.KFoldDatasetGenerator. Run the main method in this class to see an output similar to below.

```
InMemoryFileReader::Total number of lines data//input/gse59999/allergy-59999-datasets.txt =30
InMemoryFileReader::Total number of lines data//input/gse59999/sensitized-59999-datasets.txt =30
[14, 16, 28]
[32, 47, 57]
List:
GSM1463330,
GSM1463346,
GSM1463358,
GSM1463376,
GSM1463379,
GSM1463382,
GSM1463394,
GSM1463396,
List:
GSM1463336,
GSM1463341,
CCW1163362
```

Output from running com.allergezy.fa.kfold.KFoldDatasetGenerator.

This program produces an output file data/input/gse59999/k401008/gse59999-kfold-cases.txt as shown below.

The file data/input/gse59999/k401008/gse59999-kfold-cases-final.txt is the final version of this 8-fold split that is used in the rest of the study.

Below is the content of the data/input/gse59999/k401008/gse59999-kfold-cases-final.txt file.

Case 0
Training: 0 GSM1463328, GSM1463330, GSM1463342, GSM1463343, GSM1463344, GSM1463352, GSM1463354, GSM1463361, GSM1463362,
Test: 0 GSM1463332, GSM1463337, GSM1463380, GSM1463387, GSM1463389, GSM1463340, GSM1463351, GSM1463357, GSM1463370, GSM1
Hidden: 0 GSM1463334,GSM1463346,GSM1463347,GSM1463348,GSM1463350,GS <mark>M1463356,GSM1463358,GSM1463382,</mark>
Case 1
Training: 1 GSM1463330,GSM1463332,GSM1463334,GSM1463342,GSM1463344,GSM1463347,GSM1463350,GSM1463354,GSM1463356,
Test: 1 GSM1463328,GSM1463343,GSM1463363,GSM1463378,GSM1463398,GSM1463339,GSM1463336,GSM1463371,GSM1463382,GSM1
Hidden: 1 GSM1463331,GSM1463337,GSM1463338,GSM1463341,GSM1463349,GSM1463352,GSM1463379,GSM1463384,
Case 2
Training: 2 GSM1463328,GSM1463330,GSM1463332,GSM1463347,GSM1463350,GSM1463352,GSM1463354,GSM1463356,GSM1463361,
Test: 2 GSM1463334, GSM1463337, GSM1463372, GSM1463387, GSM1463394, GSM1463336, GSM1463345, GSM1463346, GSM1463368, GSM1
Hidden: 2 GSM1463342,GSM1463343,GSM1463344,GSM1463363,GSM1463371,GSM1463383,GSM1463388,GSM1463396,
Case 3
Training: 3 GSM1463328, GSM1463330, GSM1463334, GSM1463337, GSM1463342, GSM1463343, GSM1463344, GSM1463347, GSM1463350,
Test: 3 GSM1463332,GSM1463363,GSM1463376,GSM1463378,GSM1463380,GSM1463339,GSM1463358,GSM1463368,GSM1463382,GSM1
Hidden: 3 GSM1463354,GSM1463357,GSM1463361,GSM1463386,GSM1463387,GSM1463390,GSM1463392,GSM1463393,

Each sample appears at least once in the hidden set. In addition, for every case there are 40 training samples. There is an equal number of food-allergic and food-sensitized samples in each dataset and in each case.

To verify that this file can be accessed, run the main method for com.allergezy.fa.kfold.KFoldDatasetInfo. This file follows the Singleton design pattern and provides information on which samples are in the training, test, and hidden datasets for each of the eight cases. You should see the following output.

InMemoryFileReader::Total number of lines data//input/gse59999/k401008/gse59999-kfold-cases-final.txt =33

 Training:
 0 [40]:GSM1463328, GSM1463330, GSM1463342, GSM1463343, GSM1463344, GSM1463352, GSM1463354, GSM1463361, GSM1463362, GSM14

 Test:
 0 [10]:GSM1463332, GSM1463337, GSM1463380, GSM1463387, GSM1463389, GSM1463349, GSM1463357, GSM1463357, GSM1463370, GSM1463383,

 Hidden:
 0 [8]:GSM1463332, GSM1463334, GSM1463387, GSM1463387, GSM1463389, GSM1463350, GSM1463358, GSM1463357, GSM1463382,

 Normal:
 0 [0]:

 Training:
 1 [40]:GSM1463330, GSM1463332, GSM1463334, GSM1463342, GSM1463354, GSM1463359, GSM1463358, GSM1463358, GSM1463358, GSM1463358, GSM1463358, GSM1463359, GSM1463359, GSM1463359, GSM1463354, GSM1463356, GSM1463356, GSM1463356, GSM1463356, GSM1463356, GSM1463356, GSM1463357, GSM1463371, GSM1463337, GSM1463337, GSM1463378, GSM1463344, GSM1463342, GSM1463359, GSM1463377, GSM1463377, GSM1463377, GSM1463350, GSM1463352, GSM1463359, GSM1463359, GSM1463356, GSM1463356, GSM1463356, GSM1463356, GSM1463356, GSM1463377, GSM1463336, GSM1463357, GSM1463357, GSM1463356, GSM1463366, GSM1463366, GSM1463366, GSM1463386, GSM146

Normal: 2 [0]: Training: 2 FART-CEMIAR2228 CEMIAR2228 CEMIAR2234 CEMIAR2237 CEMIAR2242 CEMIAR2242 CEMIAR2244 CEMIAR2247 CEMIAR2258 CEMIA

The distribution of the samples can be seen in the following table.

Case	Test Cases (10)	Hidden Cases (8)
	GSM1463332,GSM1463337,GSM1463380,GSM1463387,	GSM1463334,GSM1463346,GSM1463347,
	GSM1463389,GSM1463340,GSM1463351,GSM1463357,	GSM1463348,GSM1463350,GSM1463356,
1	GSM1463370, GSM1463383	GSM1463358, GSM1463382
	GSM1463328,GSM1463343,GSM1463363,GSM1463378,	GSM1463331,GSM1463337,GSM1463338,
	GSM1463398,GSM1463339,GSM1463367,GSM1463371,	GSM1463341,GSM1463349,GSM1463352,
2	GSM1463382,GSM1463386	GSM1463379, GSM1463384
	GSM1463334,GSM1463337,GSM1463372,GSM1463387,	GSM1463342,GSM1463343,GSM1463344,
	GSM1463394,GSM1463336,GSM1463345,GSM1463346,	GSM1463363,GSM1463371,GSM1463383,
3	GSM1463368, GSM1463386	GSM1463388, GSM1463396
	GSM1463332,GSM1463363,GSM1463376,GSM1463378,	GSM1463354,GSM1463357,GSM1463361,
	GSM1463380,GSM1463339,GSM1463358,GSM1463368,	GSM1463386,GSM1463387,GSM1463390,
4	GSM1463382,GSM1463397	GSM1463392, GSM1463393
	GSM1463330,GSM1463361,GSM1463384,GSM1463389,	GSM1463328,GSM1463346,GSM1463349,
	GSM1463398,GSM1463331,GSM1463338,GSM1463348,	GSM1463353,GSM1463365,GSM1463368,
5	GSM1463351, GSM1463367	GSM1463372, GSM1463380
	GSM1463328,GSM1463354,GSM1463363,GSM1463372,	GSM1463330,GSM1463332,GSM1463344,
	GSM1463389,GSM1463340,GSM1463341,GSM1463353,	GSM1463351,GSM1463370,GSM1463371,
6	GSM1463377,GSM1463397	GSM1463378, GSM1463385
	GSM1463328,GSM1463350,GSM1463356,GSM1463372,	GSM1463339,GSM1463345,GSM1463352,
	GSM1463380,GSM1463331,GSM1463338,GSM1463340,	GSM1463362,GSM1463389,GSM1463391,
7	GSM1463351, GSM1463390	GSM1463397, GSM1463398
	GSM1463337,GSM1463363,GSM1463380,GSM1463389,	GSM1463336,GSM1463340,GSM1463367,
	GSM1463398,GSM1463331,GSM1463349,GSM1463357,	GSM1463373,GSM1463376,GSM1463377,
8	GSM1463388,GSM1463393	GSM1463384,GSM1463394

Table 1. Sample distribution across the eight independent cases

Each sample appears at least once in the hidden set. In addition, for every case there are 40 training samples that are not shown in the table. These 40 training samples are the remaining samples that are in neither the test nor the hidden cross-validation set for that case. There is an equal number of food-allergic and food-sensitized samples in each dataset and in each case.

4 DNAm datasets are characterized as having a small number of samples but a very high number of feature dimensions (HDLSS). To prevent overfitting and increase generalization, it is important to condense the feature list relative to the number of samples available. Computationally, it is very expensive to evaluate the more than 400K CpG features individually. Therefore, in order to limit the evaluation size and begin with a list of potentially highly-relevant CpG points, we used the NCBI <u>GEO2R tool</u> to obtain a prioritized list of CpG features differentially expressed across the two groups. For each of the eight independent cases, we split the forty training samples into two cohorts, one with allergic patients and the other with sensitized patients.The GEO2R tool was used to derive eight lists of 100 CpGs each, one for each of the eight cases.

The screenshot below shows the use of the GEO2R tool to create two cohorts of 20 samples each for the first case. Clicking on

		 Define groups 	✓ Define groups								
		Enter a group name: List				Columns 👻 S	iet				
Group	Accession	× Cancel selection	 Source name 	Gender	Phenotype	Challenge outcome					
Allergic	GSM1463328	Allerric (20 samples) m	gDNA from normal PBMC	FEMALE	Egg.allergic	allergic					
Allergic	GSM1463330		gDNA from normal PBMC	MALE	Peanut.allergic	allergic					
-	GSM1463332	Sensitized (20 samples)	gDNA from normal PBMC	FEMALE	Peanut.allergic	allergic					
	GSM1463334	9020331094_R03C02	gDNA from normal PBMC	FEMALE	Egg.allergic	allergic					
	GSM1463337	9020331094_R06C02	gDNA from normal PBMC	MALE	Peanut.allergic	allergic					
Allergic	GSM1463342	9020331131_R01C02	gDNA from normal PBMC	MALE	Peanut.allergic	allergic					
Allergic	GSM1463343	9020331131_R02C02	gDNA from normal PBMC	MALE	Egg.allergic	allergic					
Allergic	GSM1463344	9020331131_R03C02	gDNA from normal PBMC	MALE	Peanut.allergic	allergic					
	GSM1463347	9020331131_R06C02	gDNA from normal PBMC	FEMALE	Egg.allergic	allergic					
-	GSM1463350	9020331164_R03C01	gDNA from normal PBMC	MALE	Egg.allergic	allergic					
Allergic	GSM1463352	9020331164_R05C01	gDNA from normal PBMC	FEMALE	Peanut.allergic	allergic					
Allergic	GSM1463354	9020331164_R02C02	gDNA from normal PBMC	MALE	Egg.allergic	allergic					
	GSM1463356	9020331164_R05C02	gDNA from normal PBMC	FEMALE	Peanut.allergic	allergic					
Allergic	GSM1463361	9020331169_R05C01	gDNA from normal PBMC	MALE	Egg.allergic	allergic					
Alleraic	GSM1463362	9020331169 R01C02	oDNA from normal PBMC	MALE	Eog.allergic	alleroic					

The full signature for the eight cases is in data/input/gse59999/geo2r/Geo2R-cpgs.txt file.

Allergezy-Plos
🕨 🚞 bin
🔻 📃 data
🔻 🚞 input
🔻 🚞 gse59999
allergy-59999-datasets.txt
🔻 🚞 geo2r
Geo2R-cpgs
📄 Geo2r-gse5999-full-sign
geo2RfeatureScoring.txt

Below are the first twenty lines of the file data/input/gse59999/geo2r/Geo2R-cpgs.txt file. This will be used in the next few steps.

	Ceo2P.cogs tvt											
	0602K-0	,pgs.txt										
1	cg07060505	cg06410630	cg25866059	cg06410630	cg20463995	cg02681173	cg09755579	cg20502977				
2	cg02681173	cg20502977	cg24851651	cg09861992	cg03068039	cg07033513	cg24616138	cg18569070				
3	cg19714913	cg16978004	cg05861255	cg06243400	cg12050358	cg12050358	cg06410630	cg24851651				
4	cg18884295	cg13455434	cg06201372	cg00936790	cg03970350	cg19900821	cg20502977	cg01806508				
5	cg15188491	cg24616138	cg01232668	cg04015759	cg04475375	cg04543115	cg13560030	cg09618933				
6	cg06410630	cg03356595	cg26401541	cg00076774	cg26124569	cg25890092	cg03946731	cg14552508				
7	cg25199372	cg10301401	cg11555257	cg20987610	cg11941920	cg24748191	cg21936550	cg05897163				
8	cg09602803	cg17460909	cg09755579	cg27143570	cg07965110	cg26124569	cg00314240	cg08929467				
9	cg14789214	cg05406635	cg13632752	cg04958411	cg08378782	cg14014506	cg05223507	cg05791946				
10	cg12562479	cg00109551	cg07573872	cg01872024	cg07649835	cg07502333	cg00939931	cg22452122				
11	cg09755579	cg27615388	cg00968893	cg07060505	cg19585586	cg15082028	cg18798744	cg10301401				
12	cg11390957	cg01432552	cg09618933	cg00442802	cg03716942	cg01893629	cg27517563	cg21113746				
13	cg21615831	cg13560030	cg09939673	cg20445094	cg24616138	cg20795023	cg25087507	cg06410630				
14	cg23556923	cg26124569	cg11571263	cg09679227	cg04334011	cg07235355	cg24079727	cg25921609				
15	cg23216101	cg06447354	cg02313172	cg05008688	cg04623023	cg13632752	cg10461264	cg21610436				
16	cg26059153	cg10079327	cg05261496	cg18971416	cg08860346	cg00999904	cg02681173	cg02313172				
17	cg21610436	cg05435286	cg09722609	cg04746699	cg06038701	cg11740068	cg12176709	cg27560781				
18	cg03274391	cg02124291	cg16434331	cg15250507	cg24584002	cg01962758	cg10301401	cg10336671				
19	cg13169968	cg24187345	cg26281728	cg09755579	cg19539826	cg14760797	cg01441698	cg16949103				
20	cg24584002	cg27270590	cg13560030	cg04226232	cg18798744	cg08643692	cg17032565	cg04897044				

5

Next, the eight lists were combined together, which resulted in 636 unique CpGs, the count being less than 800 as some of the CpGs were repeated across the eight cases.

To map the CpGs to genes, we use the output from GEO2R contained in the file data/input/gse59999/geo2r/Geo2r-gse5999-full-sign.txt. The Singleton class com.allergezy.fa.geo2r.CPGAnnotations maps a CpG to genes using this file. Run the main method in the class com.allergezy.fa.geo2r.CPGAnnotations. You should see the output similar to the screen shot below.

300000 "cg13581475" "9.66e-01" "6.27e-01" "4.88e-01" "-5.7782727" "2.40e-02" "63924286" InMemoryFileReader::Total number of lines data//input/gse59999/geo2r/Geo2r-gse59999-full-sign.txt =462177 cg06410630 -> RNF213;L0C100294362 cg06669701 -> FAM190B cg06628000 -> SARS cg10461264 -> cg18988685 -> cg24616138 -> CTBP2;CTBP2 cg27027230 -> ARID5B cg00936790 -> KIF13B cg14414100 -> SLC24A2 cg00939931 -> MAFK cg06116095 -> PANX1 cg02788266 -> cg03068039 -> ZNF252;TMED10P cg25890092 -> CD7 cg19287711 -> cg07033513 -> cg07060505 -> cg26963090 -> TIMP2 cg06410630 -> RNF213;L0C100294362

The class com.allergezy.fa.geo2r.Geo2rCpgInfo computes the overlap between the CpGs from the GEO2R output. Running the main method produces the output shown below.

InMemoryFileReader::Total number of lines data//input/gse59999/geo2r/Geo2R-cpgs.txt =99
300000 "cgl3581475" "9.66e-01" "6.27e-01" "4.88e-01" "-5.7782727" "2.40e-02" "63924286" "MTHFD1'
InMemoryFileReader::Total number of lines data//input/gse59999/geo2r/Geo2r-gse5999-full-sign.txt =462177
Case: 99 ... 644
cg06610030 [571-5,0,0,20,90,2,12,] -- {RNF213;L0C100294362}, cg13560030 [442-59,12,19,37,4,27,] -- {NTN4}, cg02681173 [395-1,34]

The file data/input/gse59999/geo2r/geo2RfeatureScoring.txt contains the result of this analysis.

qeo2Rf	eatureS	coring.txt
3		

1	1 Id CPG Gene Score Position	
	2 1 cg06410630 RNF213;L0C100294362 5	71 5,0,0,20,90,2,12,
	3 2 cg13560030 NTN4 442 59,12,19,37	,4,27,
	4 3 cg02681173 L0C100190940 395 1,34	4,0,15,55,
	5 4 cg09755579 SNORA70B;USP34 395 10	0,7,18,70,0,
	6 5 cg20502977 COL6A3;COL6A3;COL6A3	357 1,39,3,0,
	7 6 cg26124569 LPP;LPP;LPP 333 13,5,	7,42,
	8 7 cg24616138 CTBP2;CTBP2 313 4,12,	1,70,
	9 8 cg24584002 RNASEH1 294 19,17,39,3	31,
	<pre>0 9 cg03946731 PKMYT1;PKMYT1 291 49,3</pre>	22,33,5,
	1 10 cg20463995 281 38,43,0,38,	
	2 11 cg09618933 279 47,11,59,4,	
	3 12 cg10301401 LMF1 267 6,17,10,	
	4 13 cg08378782 RASGRP2;RASGRP2;RAS	GRP2 229 8,26,37,
	5 14 cg21615831 KSR1 224 12,58,33,	73 ,
	6 15 cg07060505 221 0,10,69,	
	7 16 cg12176709 DRD2;DRD2 218 35,73	,58,16,
	8 17 cg02866639 212 27,34,27,	
	9 18 cg05897163 null 203 25,66,6,	

This is summarized as shown below

Number	CpG	Gene	Position
1	cg06410630	RNF213;LOC100294362	6, 1, 1, 21, 91, 3, 13
2	cg13560030	NTN4	60, 13, 20, 38, 5, 28
3	cg02681173	LOC100190940	$2,\!35,\!1,\!16,\!56$
4	cg09755579	SNORA70B;USP34	11,8,19,71,1
5	cg20502977	COL6A3	2,40,4,1
6	cg26124569	LPP	14,6,8,43
7	cg24616138	CTBP2	5,13,2,71
8	cg24584002	RNASEH1	20,18,40,32
9	cg03946731	PKMYT1	50,23,34,6
10	cg20463995	-	39,44,1,39,
11	cg09618933	-	48,12,60,5
12	cg10301401	LMF1	7,18,11
13	cg08378782	RASGRP2	9,27,38
14	cg21615831	KSR1	13,59,34,74
15	cg07060505	-	1,11,70

Table 2.	Top	\mathbf{CpGs}	\mathbf{and}	associated	genes	\mathbf{from}	GEO2R	across	8
independ	lent	cases							

Note that a CpG may not appear in the top 100 CpGs position across the eight cases. This list is based on the frequency of each CpG across the eight lists as well as its ranking in each list. The order of the genes in this table has no significance in our data-driven methodology but provides insight into how many of these CpGs were eventually selected later through our data-driven methodology.

Note that this ranking really has no material significance in our methodology, since we evaluated all the unique 636 CpGs independently. It does provide some insights into features highlighted by GEO2R and those that appeared in our final CpG signature. The 20% overlap we found between the CpGs across the eight lists seems to suggest that the examples do have an effect on the CpGs that are differentially expressed between the two cohorts (when GEO2R is used). Thus, averaging the results across the eight independent runs, which is performed throughout the rest of the paper, should help in avoiding any potential biases, due to the distribution of the samples across the training, test, and hidden datasets.

6 Next, we will create smaller dataset files that contain the machine learning examples with 636 CpG values as columns.

com.allergezy.fa.dataset.DatasetCreatorForEachCase -- generates the file that has the examples for each case. The output from the program is shown below.

```
InMemoryFileReader::Total number of lines data//input/gse59999/allergy-59999-datasets.txt =30
InMemoryFileReader::Total number of lines data//input/gse59999/sensitized-59999-datasets.txt =30
InMemoryFileReader::Total number of lines data//input/gse59999/geo2r/Geo2R-cpgs.txt =99
InMemoryFileReader::Total number of lines data//input/gse59999/nonallergic-59999-datasets.txt =14
```

Allergezy-Plos
🕨 🚞 bin
🔻 🚞 data
🔻 🚞 input
🔻 🚞 gse59999
allergy-59999-datasets.txt
🕨 🚞 geo2r
🕨 🚞 k401008
🔻 🚞 ml-data
casenonAllergic.txt
case-0.txt
case-1.txt
case-2.txt
case-3.txt
case-4.txt
case-5.txt
case-6.txt
case-7.txt

In the input/gse59999/ml-data there are eight files case-0.txt, case-1.txt, and so on for the eight folds.

Attached is a screen shot of a part of the first file case-0.txt.

ID_REF	cg07	7060505	5 cg02	2681173	cg19	714913	cg18	388429	5 cg1	518849	1 cg0	6410630	cg2	5199372	2 cg09	9
cg021242	291	cg0485	52972	cg0093	9931	cg14334	4310	cg006	57460	cg241	59214	cg09618	3933	cg093(03977	
cg272174	474	cg0823	35883	cg2412	6361	cg18512	2963	cg219	26875	cg256	23524	cg1181	5480	cg0774	40525	
GSM1463	328	0.7624	1729678	3158 0.3	352452	23456063	308 0	. 38035 [.]	793724	4544 0	.66043	73674803	148 0	175208	8584450	0
0.217692	23799	904955	0.365	7437019	45769	0.80989	98102	537656	0.276	434512	610983	0.5417	752114	401801	0.8763	B,
0.605049	92959	996472	0.1743	L113968	20066	0.27875	584686	575512	0.105	603368	556034	0.85658	32407	78978	0.8253	8
0.83801	01244	108319	0.8022	2793860	19525	0.21937	795073	331627	0.821	232999	938156	0.7329	76047	763439	0.1861	L
GSM1463	330	0.6553	304676	518211	0.3491	16004426	61141	0.412	464325	240356	0.701	0107932:	15693	0.209	7471035	5
0.173878	81092	200632	0.2910	0837749	94774	0.80145	527053	390324	0.286	954650	319599	0.47530	06765:	14792	0.8726	5
0.49518	65565	536599	0.1826	5777126	24027	0.27473	131313	364304	0.199	966848	885264	0.72022	283928	358865	0.8134	1
0.86068	08566	60602	0.830	7455426	18494	0.20813	380074	45818	0.824	455831	28368	0.69786	569883	872391	0.1577	7
GSM1463	332	0.7757	7338632	203392	0.2755	5942915	58274	0.472	355348	682406	0.737	92244599	99914	0.2381	1840839	9
0.22152	62926	597006	0.3004	1116757 [°]	76253	0.77147	787794	111023	0.288	110763	677039	0.50892	228213	356991	0.8465	5
0.45117	57210	070312	0.1643	3559617	73016	0.32945	584344	190091	0.317	466812	147663	0.8145	57363	588863	0.7698	8
0.87014	69252	200158	0.832	7136695	20035	0.29600	018544	105043	0.917	857480	983444	0.73693	338424	119769	0.1511	L

For each case, and for each of the 636 unique CpGs, we built four different machine learning models: Decision Trees (DT), Logistic Regression (LR), Radial Basis Function (RBF), and a Multi-Layer Perceptron (MLP), a deep learning network with two hidden layers of ten nodes each. Each predictive model only used one CpG and was built on the training data. For each case and each feature, the classifier with the highest testing accuracy was selected. Finally, the average hidden data (cross-validation set) accuracy across the eight independent cases was computed. 636 of these accuracy scores (one for each CpG) and 20,352 models (8 independent cases x 636 features x 4 classifiers) were created in total using this process, for the single input case.

com.allergezy.fa.feature.SingleFeatureScoringRunner is the class that runs this computation. A few class to note

- com.allergezy.fa.weka.WekaHelper interfaces with the Weka APIs for creating models
- Logic for writing details as part of the learning are SummaryRunResultWriterImpl -summary of results

DetailedRunResultWriterImpl -- detailed output of each model, BestModelForCasesResultWriterImpl - best model.

Run the main method com.allergezy.fa.feature.SingleFeatureScoringRunner. You should see an output similar to

<terminated> SingleFeatureScoringRunner (2) [Java Application] /Library/Java/JavaVirtualMachines/jdk1.8.0_101.jdk/Contents/Home/bin/java (Dec 9, 2018, 7:46:4 InMemoryFileReader::Total number of lines data//output/singlefeature/kfoldresult/scores.txt =41745 Nriting to file ... data//output/singlefeature/kfoldresult/scores.txt InMemoryFileReader::Total number of lines data//input/gse59999/k401008/gse59999-kfold-cases-final.txt =33 NekaHelper: class com.allergezy.fa.feature.FeatureScoringWekaHelper NekaDatasetBuilder: class com.allergezy.fa.weka.WekaDatasetBuilder InMemoryFileReader::Total number of lines data//input/gse59999/ml-data/case-0.txt =59 Completed 1 run out of 352 Completed 2 run out of 352 digraph J48Tree { N0 [label="cg07060505"] NO->N1 [label="<= 0.338886"] N1 [label="0 (28.0/8.0)" shape=box style=filled] NO->N2 [label="> 0.338886"] N2 [label="1 (12.0)" shape=box style=filled] }

This program writes output to data/output/singlefeature/kfoldresult. Subdirectories case0, case1, ..., case7 has results for the eight folds. Within each directory are four sub directories: DECISION_TREE, LOGISTIC_REGRESSION, MLP, RBF. Within each directory are detailed results for each model and results -- featscore0.txt, featscore1.txt,,

The class com.allergezy.fa.feature.BestFeatureIdentifierUsingHiddenTestScores computes the average score for each feature across the eight cases.

The following is a screen shot of the output file featureScoring.txt

	teaturescoring.txt	
	1 cg21509821 MLP 0 1 50 50 0.5425 50 50 0.8 50 50 0.8125	
	2 cg21509821 LOGISTIC_REGRESSION 0 1 50 50 0.5 50 50 0.5 50 50 0.5	
	3 cg21509821 DECISION_TREE 0 1 50 50 0.5 50 50 0.5 50 50 0.5	
	4 cg21509821 RBF 0 1 57.5 42.5 0.615 60 40 0.52 62.5 37.5 0.8125	
	5 cg14086013 MLP 0 2 72.5 27.5 0.8 50 50 0.64 50 50 0.5	
	6 cg14086013 LOGISTIC_REGRESSION 0 2 72.5 27.5 0.8 50 50 0.64 62.5 37.5 0.5	
	7 cg14086013 DECISION_TREE 0 2 75 25 0.75 50 50 0.5 50 0.5	
	8 cg14086013 RBF 0 2 72.5 27.5 0.8175 40 60 0.6 50 50 0.5625	
	9 cg07133741 MLP 0 3 80 20 0.8925 30 70 0.52 87.5 12.5 0.9375	
	10 cg07133741 LOGISTIC_REGRESSION 0 3 77.5 22.5 0.7775 30 70 0.28 87.5 12.5 0.8125	
	11 cg07133741 DECISION_TREE 0 3 85 15 0.8625 30 70 0.3 87.5 12.5 0.875	
	12 cg07133741 RBF 0 3 77.5 22.5 0.855 30 70 0.52 87.5 12.5 0.875	
L4	13 cg10336671 MLP 0 4 85 15 0.8875 60 40 0.64 87.5 12.5 0.9375	Ľ.

com.allergezy.fa.feature.BestFeatureIdentifierUsingHiddenTestScores

Output from the console

Reading file ...data//output/singlefeature/kfoldresult/scores.txt InMemoryFileReader::Total number of lines data//output/singlefeature/kfoldresult/scores.txt =41753 Writing epoch cpgs ... 5114 data//output/singlefeature/kfoldresult/bestFeatureScoresCpgEpoch.txt Writing ... 641 data//output/singlefeature/kfoldresult/bestFeatureScoresCpg.txt

Output file data/output/singlefeature/kfoldresult.bestFeatureScoresCpg.txt

431 RBF 2 13772 89.0625 10.9375 0.9146875 83.75 16.25 0.8075 84.375 15.625 0.8359375
87 LOGISTIC_REGRESSION 1 2758 80.0 20.0 0.7734375 83.75 16.25 0.825 81.25 18.75 0.7890625
4 LOGISTIC_REGRESSION 6 122 76.875 23.125 0.80625 80.0 20.0 0.75 79.6875 20.3125 0.8359375
32 LOGISTIC_REGRESSION 1 998 79.6875 20.3125 0.8178124999999999 76.25 23.75 0.76 78.125 21.875 0.7421875
22 LOGISTIC_REGRESSION 5 694 79.0625 20.9375 0.8071875000000001 77.5 22.5 0.79 76.5625 23.4375 0.8125
379 MLP 3 12109 76.875 23.125 0.80625 63.75 36.25 0.59 76.5625 23.4375 0.7109375
269 LOGISTIC_REGRESSION 5 8598 76.875 23.125 0.7878125 80.0 20.0 0.7899999999999999 75.0 25.0 0.7734375
561 LOGISTIC_REGRESSION 2 17930 83.4375 16.5625 0.8505468750000001 77.5 22.5 0.8049999999999999 75.0 25.0 0.828125
541 LOGISTIC_REGRESSION 4 17298 74.0625 25.9375 0.7949999999999999 77.5 22.5 0.795 75.0 25.0 0.7421875

Attached is the screenshot of the final file, sorted by average hidden test accuracy.

7196	cg07193234	RBF	2	431	89.0625	10.9375	0.9146875	83.75	16.25	0.8075	84.375	15.625	0.8359375
3082	cg24854095	LOGISTIC_RE	1	87	80	20	0.7734375	83.75	16.25	0.825	81.25	18.75	0.7890625
16430	cg10336671	LOGISTIC_RE	6	4	76.875	23.125	0.80625	80	20	0.75	79.6875	20.3125	0.8359375
2862	cg17825100	LOGISTIC_RE	1	32	79.6875	20.3125	0.8178125	76.25	23.75	0.76	78.125	21.875	0.7421875
13766	cg04958411	LOGISTIC_RE	5	22	79.0625	20.9375	0.8071875	77.5	22.5	0.79	76.5625	23.4375	0.8125
9721	cg27217474	MLP	3	379	76.875	23.125	0.80625	63.75	36.25	0.59	76.5625	23.4375	0.7109375
14754	cg18512963	LOGISTIC_RE	5	269	76.875	23.125	0.7878125	80	20	0.79	75	25	0.7734375
7714	cg10205430	LOGISTIC_RE	2	561	83.4375	16.5625	0.85054688	77.5	22.5	0.805	75	25	0.828125
13106	cg01962758	LOGISTIC_RE	4	541	74.0625	25.9375	0.795	77.5	22.5	0.795	75	25	0.7421875
17077	cg06868247	MLP	6	166	75.625	24.375	0.7465625	76.25	23.75	0.735	75	25	0.7734375
4413	cg04774040	MLP	1	420	76.5625	23.4375	0.8215625	75	25	0.72	75	25	0.7421875
11857	cg02681173	MLP	4	229	73.75	26.25	0.81625	75	25	0.8	75	25	0.8203125
4146	cg04475375	LOGISTIC_RE	1	353	72.8125	27.1875	0.7771875	75	25	0.77	75	25	0.7734375
17793	cg14336003	MLP	6	345	72.8125	27.1875	0.8240625	72.5	27.5	0.785	75	25	0.8125
9362	cg09095047	LOGISTIC_RE	3	289	69.375	30.625	0.763125	67.5	32.5	0.76	75	25	0.78125
4706	cg05359853	LOGISTIC_RE	1	493	74.6875	25.3125	0.771875	66.25	33.75	0.595	75	25	0.75
7121	cg12596505	MLP	2	413	77.1875	22.8125	0.7965625	66.25	33.75	0.5925	75	25	0.796875
20497	cg12285988	MLP	7	337	79.0625	20.9375	0.81390625	63.75	36.25	0.6	75	25	0.765625
16974	cg02382878	LOGISTIC_RE	6	140	70	30	0.748125	85	15	0.82	73.4375	26.5625	0.7734375
13314	cg01079652	LOGISTIC RE	4	593	75.3125	24.6875	0.8103125	82.5	17.5	0.8125	73.4375	26.5625	0.8359375

The following graph summarizes the results.

Figure 1. Average accuracy across eight independent cases for singular CpG features. Each CpG was used as an input to create classifiers using four different machine learning methods. The classifier with the best score on test data was then selected and evaluated on the hidden dataset. The above accuracy for each CpG is the average accuracy across the eight different cases. cg06410630 was the top CpG with an average accuracy of 84.375%. 18 CpGs had a score of 75% or more.

The top CpGs with associated genes are

			Average	
Number	CpG	Gene	Accuracy	AUROC
1	cg06410630	RNF213;LOC100294362	84.375	0.8359375
2	cg06669701	FAM190B	81.25	0.7890625
3	cg06628000	SARS	79.6875	0.8359375
4	cg10461264	-	78.125	0.7421875
5	cg18988685	-	76.5625	0.8125
6	cg24616138	CTBP2	76.5625	0.7109375
7	cg27027230	ARID5B	75	0.765625
8	cg00936790	KIF13B	75	0.7421875
9	cg14414100	SLC24A2	75	0.7734375
10	cg00939931	MAFK	75	0.796875
11	cg06116095	PANX1	75	0.7421875
12	cg02788266	-	75	0.7734375
13	cg03068039	ZNF252;TMED10P	75	0.828125
14	cg25890092	CD7	75	0.8203125
15	cg19287711	-	75	0.78125
16	cg07033513	-	75	0.75
17	cg07060505	-	75	0.8125
18	cg26963090	TIMP2	75	0.7734375

Table 3. Top CpGs and associated genes using single inputs to a classifier across 8 independent cases

These 18 CpGs achieved an accuracy score of 75% or higher when used as the singular input feature in the machine learning models. cg06410630 with an accuracy of 84.375% was the top CpG from the 636 CpGs that were used to create single input classifiers. The scores were averaged over 8 independent cases. For each case, the machine learning models were retrained and accuracy was computed on completely hidden data.

8 We sought to increase the number of features used by the classifier while still avoiding over-fitting and encouraging generalization. Therefore, we selected the first eighteen CpGs, based on the accuracy scores computed above, and combined them two at a time, followed by three at a time, and so on until combinations of twelve were reached. Given the large number of potential combinations, each model was limited to a small subset of strong CpG-lists, to which a new input feature was added. On an average, we tried about 200 unique combinations for a given number of input features. Again, each unique input feature combination set was run 4 × 8 = 32 times, to account for the four different classifier methods and 8 independent sample-distribution "cases".

The class com.allergezy.fa.multifeature.casegenerator.MultiFeatureCasesGenerator is used to create next set of cases to be tried.

9 For a given number of input features, the models were ranked using their average accuracy scores on hidden data cohorts (described above). Odd numbers of models, starting from 1 to 101, were combined together using a simple voting scheme, i.e., each model independently predicted whether a sample was classified as FA or sensitized and the final prediction was the majority of predictions made across the different models.

The class com.allergezy.fa.kfold.verify.VerifyWekaDatasetRunner runs the set of cases specified in the data/output/multifeature/setup/summary.txt file. A screen shot of an example file is shown next.

2000000063 MLP 2 1993 100 0 1 96.25 3.75 0.985 100 0 1 cg06410630 cg10461264 cg06116095 cg06628000 cg26963090 cg18988685 cg02788266 cg030660 2000000084 MLP 2 2665 100 0 1 95 5 0.995 100 0 1 cg06410630 cg10461264 cg06116095 cg06628000 cg26963090 cg18988685 cg02788266 cg03068039 cg

This class has a visitor BestModelForCasesResultWriterImpl configured to calculate majority prediction.

private List<ResultWriter> getVisitors() {
 List<ResultWriter> resultWriters = new ArrayList<ResultWriter>();
 // Detail of each run
 resultWriters.add(new DetailedRunResultWriterImpl(GSE59999_Verify_DetailCombination_Result, "case"));
 // Best model for each case -- summary majority prediction by voting
 resultWriters.add(new BestModelForCasesResultWriterImpl(GSE59999_Verify_BestAnalyzerOut_CaseResult));
 // Summary for each case
 resultWriters.add(new SummaryRunResultWriterImpl(GSE59999_Verify_FeatureCombination_Result));

Iterate different combinations of CpG features using the summary.txt file as input, run the results, select the best models, and try new combinations adding one feature at a time. The results for various combinations are in the directory data/output/multfeature/result/Final.

10 The file com.allergezy.fa.rawdata.RawCpGDataExtractor can extract raw CpG values for a CpG across the samples and can be used for generating data plots. Here is an example file.

		rawCpgData	.txt
1	1	cg03068039	cg10461264
	1	0.861645527	0.317720181
	1	0.837680237	0.216547093
4	1	0.797510971	0.2253189
	1	0.793506157	0.237929743
	1	0.839851223	0.184351872
	1	0.794760701	0.233254063
	1	0.818285816	0.244467575
	1	0.788111136	0.247797637
	1	0.797850347	0.219340641
	1	0.814959698	0.28031957

com.allergezy.fa.featureanalyzer.CpGFrequencyFeatureAnalyzer Analyzes the frequency of various CpG across the summary file 11 Gene set analysis can provide biological context, as well as insights into disease mechanisms and possible treatments. Biological enrichment was performed by applying Illumina's BaseSpace Correlation Engine to the 13-gene list. To understand these genes better we identified tissues where the genes were expressed, found associated biological pathways, used gene ontology concepts to identify functionally-related gene sets, connected the 13-gene list to the Broad positional gene sets, and connected the gene signature to protein families.

The 13-gene signature was imported into Illumina BaseSpace Correlation Engine

13 features Symbol	EntrezGene ID	Imported ID
RNF213	57674	RNF213
ZNF252P	286101	ZNF252
TMED10P1	286102	TMED10P
SARS	6301	SARS
TIMP2	7077	TIMP2
MAFK	7975	MAFK
CD7	924	CD7
PANX1	24145	PANX1
CTBP2	1488	CTBP2
SLC24A2	25769	SLC24A2
ARID5B	84159	ARID5B
KIF13B	23303	KIF13B
FAM190B	54462	FAM190B

QuickView for Bioset: allergezy-2018 Bioset from study: 18 CpG 13 gene signature Homo sapiens RE RNA Expression 13 fer View Bioset Details Cite Delete	atures (mapped to 13 genes)	
> NEXTBIO SUMMARY > BIOSET DATA		
Search by genes or keywords Q show	w all Data Filter ^{NEW} Pathway Viewer ^{NEW} Pathway Studio ^l	NEW
13 features Symbol	EntrezGene ID	Imported ID
RNF213	57674	RNF213
ZNF252P	286101	ZNF252
TMED10P1	286102	TMED10P

Body Atla	IS for Bioset:									
∎ allergezy-2018										
Bioset from stu dia Homo sap	idy: 18 CpG 13 gei biens RE_RNA Ex	ne signature pression 13 fea	atures (mapp	bed to 13	genes)					
View Bioset De	etails									
✓ <u>TISSUES</u>	> CELL TYPES	> CELL LINES	> STEM	CELLS						
View by: B	ody Systems 🗸	Organism:	lomo sapien	s 💌	Source:	Array ba	ased		•	Scale:
 Body System 	locator		1						Correla	tion Ove
Name				Score					?	
Urogenit	tal System			0 2	4	6	8	_10	RE	
👔 🔳 🕨 Ute	erus									
★ ► My	vometrium									
🟋 🔳 🕨 Bla	adder									
🏋 🔳 🕨 Pla	acenta									
👔 🔳 🕨 En	dometrium									
Open 13 m	ore									

Disease Atlas for Bioset:				
™ allergezy-2018				
Bioset from study: 18 CpG 13 gene signature Homo sapiens RE RNA Expression 13 features (mapped to	13 genes)			
View Bioset Details				
✓ <u>CORRELATED DISEASES</u> > CORRELATED STUDIES				
View by: Categories View all disease studies				
Disease Category locator				
Name	Score 0	Supporting Data Types	# Studies	Correlation w (filter)
Genetic Disorders and Chromosomal Abnormalities				
Congenital chromosomal disease	100	CN	1	positive
Down syndrome	59	ME RE	7	negative
Anomaly of chromosome pair 21	58	ME RE	7	negative
Anomaly of chromosome pair 14	51	RE	2	negative
Turner syndrome	49	RE	1	positive
Open 5 more				

Pathway Enrichment for Bioset:						
Image: The second s						
Bioset from study: 18 CpG 13 gene signature Homo sapiens RE RNA Expression 13 features (mapped	d to 13 genes)					Forward
View Bioset Details						
Filter by: → <u>Biogroup Source</u> → <u>Keyword</u>	Min: 10 genes	Max: 500	genes			
Select Biogroup to filter by:						
Gene Ontology GO	miRNA targets Targ	etScan		Canonical pathway	s Broad MSigDB	
Positional gene sets Broad MSigDB	Protein families Inte	erPro, PMAP		Regulatory motifs	Broad MSigDB	
S Gene Ontology GO					X Clear Filters	× Cancel
Bioset Biogroup correlation results						Ê
1 to 100 of 107 biogroups						
Biogroups			Normalized Score	P-Value	(filter)	Co
fat cell differentiation GO			100	0.0002		2
divalent inorganic cation transmembrane transporter activity GO			89	0.0005		2

12 GO provides a framework for analyzing a group of co-expressed genes and provides insights into whether particular genes are involved in diseases. Similar to other ontologies, GO consists of terms and relationships represented in a directed acylic graph. <u>GO</u> focuses on using the terms in the ontology to describe gene functions. In GO, gene function is classified along three categories: molecular functions, cellular components, and biological processes.

The <u>GO Enrichment Analysis Tool</u> was used to find GO terms associated with the 13gene signature. Enter the following gene list as shown

RNF213 SARS ZNF252 TMED10P ABCF2 TIMP2 MAFK CD7 PANX1 CTBP2 SLC24A2 ARID5B KIF13B FAM190B

Gene Ontology Consortium	Home	Documentation -	Downloads 👻	Tools 👻	About 👻	Contact us		
Enrichmont	Tools /	GO Enrichment Analys	sis					
analysis	GO Enrichment Analysis							
CTBP2 SLC24A2 ARID5B KIF13B FAM190B	One of the regulated of annotation	e main uses of the GO is under certain condition: Is for that gene set.	s to perform enrich s, an enrichment a	ment analysi nalysis will fi	s on gene se nd which GO	ts. For example, given a terms are over-represen		
biological process	Enrich	nment analysi	s tool					
Homo sapiens \$	Users can from the P explained	perform enrichment an ANTHER Classification in great detail in Mi H e	alyses directly from System, which is r t al, PMID: 238680	n the <mark>home p</mark> maintained u 73. The list c	page of the G p to date with of supported	OC website. This service h GO annotations. The P gene IDs is available fror		
Help	Using th	ne GO enrichment	analysis tools	5				
Powered by PANTHER	1. Paste o	or type the names of the	e genes to be an	alyzed, one	per row or s	eparated by a comma.		

After computation the results are shown below.

Displaying only results for Bonferroni-corrected for P < 0.05, <u>click here to display all results</u>

	Homo sapiens (REF)		<u>upload</u>	EW!	?)	
GO biological process complete	<u>#</u>	<u>#</u>	expected	Fold Enrichment	<u>+/-</u>	<u>P value</u>
Unclassified	<u>3250</u>	1	1.86	.54	-	0.00E00

Follow the same procedure for the other two options: molecular function and cellular component, as shown below.

The results from this analaysis is shown below.

So GENEONTOLOGY Unifying Biology Classification System											
			LOGIN	REGISTER	CONTACT US						
Home	About	PANTHER Data	PANTHER Tools	Workspace	Downloads	Help/Tutorial					
UPL	14.0 New	PANTHER14.	0 is generated fr	om the 201	3_04 release	of <u>ReferencePro</u>	<u>teome dat</u>	<u>aset</u>			
Analy	sis Sum	mary: Please re	port in publicatior	1?							
Ar	nalysis 1	ype: PANTHER	Overrepresentat	tion Test (Re	leased 2018	113)					
Ar	notatio	n Version and F	Release Date: Go	O Ontology o	latabase Rel	eased 2018-12-01					
A	nalyzed	List:	upload_1 (H	lomo sapien	s)			Cha	nge		
R	eference	e List:	Homo sapie	ens (all gene	s in database)		Cha	nge		
Ar	Annotation Data Set: GO molecular function complete										
Те	Test Type: OFisher's Exact Binomial										
Co	orrection	n: OCalculate F	False Discovery F	Rate 💿 Use	the Bonferro	ni correction for m	ultiple test	ing 🔋 🔵	No correction		

Results 🕐

Results 🙂		
	Reference list	upload_1
Mapped IDs:	20996 out of 20996	<u>12</u> out of 12
Unmapped IDs:	<u>0</u>	<u>2</u>
Multiple mapping information:	0	<u>0</u>

3onferroni count: 2782

Export results

o statistically significant results. Click to see all results.

About | Relea

Next, the <u>Generic Gene Ontology (GO) Term Mapper</u> tool from Princeton University to map granular GO annotations to a higher-level set of terms, thus providing a broad set of categories.

-3	IGLER INSTITUTE FOR INTEGRATIVE GENOMICS
	GENERIC GENE ONTOLOGY (GO) TERM MAPPER
	Welcome to the GOTERMMAPPER, a tool for mapping the granular GO annotations for genes in a list to a set of broader, high-level GO parents terms (sometimes referred to as GO Slim terms), allowing you to bin
	The implementation of this Generic GO Term Mapper uses map2sim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Ga GMOD project.
	GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enrice
	Basic Inputs
	1. Either Enter List of Genes (separate each gene by a return). <u>SGD sample gene list</u> (cotional)
	RNF213 SARS ZWIGE2
	TMEDIOP ABCF2
	OR Upload a File Containing List of Genes: Choose File No file chosen [CLEAR]
	2. Choose 1 of the 3 Ontology Aspects: • Process • Function • Component
	3. Organism (Annotation): Saccharomyces cerevisiae (SGD)
	4. Ontology: 🗧 Generic slim 🕒 Yeast slim
	(or upload a custom ontology or list of GOIDs in the Advanced Options)
	5. Choose Your Output Format: 🖸 Plain text 🗹 HTML table
	6. Enter Gene URL for the Organism (optional):
	The results for the Basic Inputs are ready within a few seconds.

Make sure to select HomoSapiens for the Organism as shown

ON UNIVERSITY
-SIGLER INSTITUTE FOR INTEGRATIVE GENOMICS
GENERIC GENE ONTOLOGY (GO) TERM MAPPER
Welcome to the GOTERMMAPPER, a tool for mapping the granular GO annotations for genes in a list to a set of broader, high-level GO parents terms (sometimes referred to as GO Slim terms), allowing you to bin your generation of the set of broader is a set of broader.
The implementation of this Generic GO Term Mapper uses map2sim.pl script written by Chris Mungall at Berkeley Drosophila Genome Project, and some of the modules included in the GO-TermFinder distribution written by Gavin Sher GMOD project.
GO Term Mapper serves a different function than the GO Term Finder. GO Term Mapper simply bins the submitted gene list to a static set of ancestor GO terms. In contrast, GO Term Finder finds the GO terms significantly enriched in a
Basic Inputs 1 Either Enter List of Genes (separate each gene by a return). SGD sample gene list (optional) RNE213 SARS ARSF2 CN252 TMEDTOP ARCF2 OR Upload a File Containing List of Genes: Choose File No file chosen (CLEAR) 2. Choose 1 of the 3 Ontology Aspects: Process Function Component 3. Organism (Annotation): Homo sapiens (GOA @EBI) g 4. Ontology: Generic silm GOA silm (or upload a custom ontology or list of GOIDs in the Advanced Options) 5. Choose Your Output Format: Plain text @ HTML table 6. Enter Gene URL for the Organism (optional): The results for the Basic Inputs are ready within a few seconds.

The results are shown below.

	GENE	RIC GENE ONTOLOGY (GO) TERM SEARCH RESULTS	IMAPPER	
PLEASE NOTE: You had chosen the GO consortium's and	J biological_process for the ontology aspect in the Basic Inputs.	Save Options: <u>HTML Table Plain Text Tab-delimitec</u> Your Input Gene List	1 Now	
Your input list contains 14 genes.				
These 2 identifiers were found to be unannotated: ZNF	252 TMED10P			
		GO Terms from the biological_process Ontolog	ay .	
	GO Term (GO ID)	Genes Annotated to the GO Term	GO Term Usage in Gene Lis	t Genome Frequency of Use
	signal transduction (GO:0007165)	ARID5B. CD7, CTBP2, KIF13B, RNF213, TIMP2	6 of 12 genes, 50.00%	6032 of 19737 annotated genes, 30.56
	anatomical structure development (GO:0048856)	ARID5B, KIF13B, MAFK, RNF213, SARS, TIMP.	2 6 of 12 genes, 50.00%	5720 of 19737 annotated genes, 28.98
	transport (GO:0006810)	CTBP2, KIF13B, PANX1, SLC24A2, TIMP2	5 of 12 genes, 41.67%	5138 of 19737 annotated genes, 26.03
	biosynthetic process (GO:0009058)	ARID5B, CTBP2, MAFK, SARS	4 of 12 genes, 33.33%	6194 of 19737 annotated genes, 31.38
	cell differentiation (GO:0030154)	ARID5B. CTBP2, KIF13B, TIMP2	4 of 12 genes, 33.33%	4032 of 19737 annotated genes, 20.43
	cellular nitrogen compound metabolic process (GO:0034641)	ARID5B, CTBP2, MAFK, SARS	4 of 12 genes, 33.33%	6503 of 19737 annotated genes, 32.95
	cell-cell signaling (GO:0007267)	CTBP2, PANX1, RNF213, SLC24A2	4 of 12 genes, 33.33%	1580 of 19737 annotated genes, 8.015
	immune system process (GO:0002376)	CD7, KIF13B, TIMP2	3 of 12 genes, 25.00%	3099 of 19737 annotated genes, 15.70
	cellular protein modification process (GO:0006464)	ARID5B, RNF213, TIMP2	3 of 12 genes, 25.00%	4068 of 19737 annotated genes, 20.61
	cellular component assembly (GO:0022607)	PANX1, RNF213	2 of 12 genes, 16.67%	2964 of 19737 annotated genes, 15.02
	protein-containing complex assembly (GO:0065003)	PANX1, RNF213	2 of 12 genes, 16.67%	1863 of 19737 annotated genes, 9.445
	anatomical structure formation involved in morphogenesis (GO:0048	3646) <u>RNF213, SARS</u>	2 of 12 genes, 16.67%	1067 of 19737 annotated genes, 5.415
	response to stress (GO:0006950)	MAFK, PANX1	2 of 12 genes, 16.67%	3875 of 19737 annotated genes, 19.63
	vesicle-mediated transport (GO:0016192)	CTBP2, TIMP2	2 of 12 genes, 16.67%	2109 of 19737 annotated genes, 10.69
	cell proliferation (GO:0008283)	CTBP2, TIMP2	2 of 12 genes, 16.67%	1989 of 19737 annotated genes, 10.0
	transmembrane transport (GO:0055085)	PANX1, SLC24A2	2 of 12 genes, 16.67%	1542 of 19737 annotated genes, 7.819
	catabolic process (GO:0009056)	RNF213, TIMP2	2 of 12 genes, 16.67%	2539 of 19737 annotated genes, 12.8
	reproduction (GO:0000003)	ARID5B	1 of 12 genes, 8.33%	1419 of 19737 annotated genes, 7.195
	nervous system process (GO:0050877)	SLC24A2	1 of 12 genes, 8.33%	1422 of 19737 annotated genes, 7.205
	protein targeting (GO:0006605)	KIF13B	1 of 12 genes, 8.33%	423 of 19737 annotated genes, 2.14%
	homeostatic process (GO:0042592)	SLC24A2	1 of 12 genes, 8.33%	1845 of 19737 annotated genes, 9.355
	cellular amino acid metabolic process (GO:0006520)	SARS	1 of 12 genes, 8.33%	335 of 19737 annotated genes, 1.70%
	extracellular matrix organization (GO:0030198)	TIMP2	1 of 12 genes, 8.33%	355 of 19737 annotated genes, 1.80%
	cytoskeleton organization (GO:0007010)	FAM190B	1 of 12 genes, 8.33%	1304 of 19737 annotated genes, 6.61
	translation (GO:0006412)	SARS	1 of 12 genes, 8.33%	640 of 19737 annotated genes, 3.24%
	mitotic cell cycle (GO:0000278)	TIMP2	1 of 12 genes, 8.33%	920 of 19737 annotated genes, 4.66%
	small molecule metabolic process (GO:0044281)	SARS	1 of 12 genes, 8.33%	2016 of 19737 annotated genes, 10.21
	symbiont process (GO:0044403)	CTBP2	1 of 12 genes, 8.33%	778 of 19737 annotated genes, 3.94%
	cell motility (GO:0048870)	ARID5B	1 of 12 genes, 8.33%	1594 of 19737 annotated genes, 8.08%
	cell morphogenesis (GO:0000902)	KIF13B	1 of 12 genes, 8.33%	1010 of 19737 annotated genes, 5.125
	tRNA metabolic process (GO:0006399)	SARS	1 of 12 genes, 8.33%	194 of 19737 annotated genes, 0.98%
	chromosome organization (GO:0051276)	ARID5B	1 of 12 genes, 8.33%	1172 of 19737 annotated genes, 5.94%
	aging (GO:0007568)	TIMP2	1 of 12 genes, 8.33%	303 of 19737 annotated genes, 1.54%
	Incomption (00:0040044)	401050	4 -640 0.0000	1000 (1000

The results are summarized in the following table.

	GO Term	GO ID	Genes Annotated to the GO Term	GO Term Usage in Gene List	Genome Frequency x of 19497 annotated genes
			ARID5B, CD7, CTBP2, KIF13B,		
1	signal transduction	GO:0007165	RNF213, TIMP2	6 of 12 genes, 50.00%	6030
			ARID5B, CD7, CTBP2, KIF13B,		
2	anatomical structure development	GO:0048856	RNF213, TIMP2	$6~{\rm of}~12$ genes, 50.00%	5588
3	biosynthetic process	GO:0009058	ARID5B, CTBP2, MAFK, SARS	4 of 12 genes, 33.33%	6416
4	cell differentiation	GO:0030154	ARID5B, CTBP2, KIF13B, TIMP2	4 of 12 genes, 33.33%	3981
	cellular nitrogen				
5	compound metabolic process	GO:0034641	ARID5B, CTBP2, MAFK, SARS	4 of 12 genes, 33.33%	6622
6	transport	GO:0006810	KIF13B, PANX1, SLC24A2, TIMP2	4 of 12 genes, $33.33%$	4956
7	immune system process	GO:0002376	CD7, KIF13B, TIMP2	3 of 12 genes, 25.00%	2974
8	cell-cell signaling	GO:0007267	PANX1, RNF213, SLC24A2	3 of 12 genes, 25.00%	1593
	cellular protein				
9	modification process	GO:0006464	ARID5B, RNF213, TIMP2	3 of 12 genes, 25.00%	4113
	cellular component				
10	assembly	GO:0022607	PANX1, RNF213	2 of 12 genes, 16.67%	2713
11	protein-containing	00000000	DANIXI DIJECIO	2 (12 10 (70)	1000
	complex assembly	GO:0065003	PANAI, RNF213	2 of 12 genes, 16.67%	1686
12	involved in morphogenesis	CO:0048646	RNE213 SARS	2 of 12 gapes 16.67%	1020
12	response to stress	CO:0006950	MAFK PANX1	2 of 12 genes, 16.67%	3830
14	coll proliferation	GO:0000350	CTRD2 TIMD2	2 of 12 genes, 16.67%	1072
15	transmombrane transport	CO:0055085	DANY1 SI C24A2	2 of 12 genes, 16.67%	1524
16	estabolia process	GO:0000056	DNE912 TIMD9	2 of 12 genes, 16.67%	2442
17	catabolic process	GO:0009030	ADIDED	$\frac{1}{1} \text{ of } 12 \text{ genes, } 10.07\%$	1201
11	autoskalaton dapandant	GO:0000003	ARID3B	1 of 12 genes, 8.33%	1591
18	intracellular transport	GO:0030705	KIF13B	1 of 12 genes 8 33%	157
10	nervous system process	GO:0050877	SLC24A2	1 of 12 genes, 8.33%	1364
20	protein targeting	GO:0006605	KIF13B	1 of 12 genes, 8.33%	307
20	homeostatic process	GO:0000000	SLC24A2	1 of 12 genes, 8.33%	1641
21	cellular amino acid	00.0042552	51024112	1 of 12 genes, 0.55%	1041
22	metabolic process	GO:0006520	SARS	1 of 12 genes, 8.33%	367
23	extracellular matrix organization	GO:0030198	TIMP2	1 of 12 genes, 8.33%	335
24	cytoskeleton organization	GO:0007010	FAM190B	1 of 12 genes, 8.33%	1212
25	translation	GO:0006412	SARS	1 of 12 genes, 8.33%	604
26	mitotic cell cvcle	GO:0000278	TIMP2	1 of 12 genes, 8.33%	976
	small molecule				-
27	metabolic process	GO:0044281	SARS	1 of 12 genes, $8.33%$	2081
28	vesicle-mediated transport	GO:0016192	TIMP2	1 of 12 genes, 8.33%	2000
29	symbiont process	GO:0044403	CTBP2	1 of 12 genes, 8.33%	841
30	cell motility	GO:0048870	ARID5B	1 of 12 genes, 8.33%	1488
31	cell morphogenesis	GO:0000902	KIF13B	1 of 12 genes, 8.33%	932
32	tRNA metabolic process	GO:0006399	SARS	1 of 12 genes, 8.33%	188
33	chromosome organization	GO:0051276	ARID5B	1 of 12 genes, 8.33%	1174
34	aging	GO:0007568	TIMP2	1 of 12 genes, 8.33%	284
35	locomotion	GO:0040011	ARID5B	1 of 12 genes, 8.33%	1721
36	growth	GO:0040007	ARID5B	1 of 12 genes, 8.33%	922
37	cell cycle	GO:0007049	TIMP2	1 of 12 genes, 8.33%	1793

The Generic Gene Ontology (GO) Term Mapper tool [41] was used to to map granular GO annotations to a broader, higher-level set of terms. The last column should be read as "xxx of 19497 annotated genes". Note that two genes, ZNF252 and TMED10P, did not map to any GO terms.

The resulting GO terms are

GO:0030705 GO:0007165 GO:0048856 GO:0006810 GO:0009058 GO:0030154 GO:0034641 GO:0007267

GO:0002376 GO:0006464 GO:0022607 GO:0065003 GO:0048646 GO:0006950 GO:0016192 GO:0008283 GO:0055085 GO:0009056 GO:000003 GO:0050877 GO:0006605 GO:0042592 GO:0006520 GO:0030198 GO:0007010 GO:0006412 GO:0000278 GO:0044281 GO:0044403 GO:0048870 GO:0000902 GO:0006399 GO:0051276 GO:0007568 GO:0040011 GO:0040007 GO:0007049

Next, the **<u>REVIGO</u>**, an online tool that summarizes and visualizes lists of gene ontology terms, to find a representative set of terms using a clustering algorithm.

The frequency and uniqueness of the GO terms can be seen below.

Hide/sho	w dispensable GO terms	de <u>Export</u>	esults to te	<u>ext table (CSV)</u>	Make R script for plotting
term ID	description	frequency	pin?	uniqueness	dispensability
GO:000003	reproduction	7.871 %		1.00	0.00
GO:0002376	immune system process	16.463 %		0.95	0.00
GO:0006399	tRNA metabolic process	1.016 %		0.90	0.00
GO:0006950	response to stress	21.310 %		0.94	0.00
GO:0007568	aging	1.633 %		0.89	0.00
GO:0030705	cytoskeleton-dependent intracellular transport	0.825 %		0.87	0.00
GO:0040007	growth	5.447 %		0.95	0.00
GO:0040011	locomotion	9.452 %		0.95	0.00
GO:0042592	homeostatic process	9.371 %		0.95	0.00
GO:0044403	symbiosis, encompassing mutualism through parasitism	4.322 %		0.95	0.00
GO:0050877	neurological system process	7.438 %		0.95	0.00
GO:0051276	chromosome organization	3.566 %		0.87	0.00
GO:0008283	cell proliferation	11.321 %		0.94	0.02
GO:0007049	cell cycle	10.000 %		0.92	0.02
GO:0009058	biosynthetic process	36.924 %		0.93	0.05
GO:0000278	mitotic cell cycle	5.822 %		0.92	0.07
GO:0009056	catabolic process	11.471 %		0.92	0.10
GO:0044281	small molecule metabolic process	12.072 %		0.90	0.10
GO:0006412	translation	3.693 %		0.87	0.16
GO:0030198	extracellular matrix organization	1.829 %		0.87	0.18
GO:0022607	cellular component assembly	15.638 %		0.86	0.26
<u>G0:0065003</u>	macromolecular complex assembly	9.977 %	-[=]	0.86	0.70
GO:0034641	cellular nitrogen compound metabolic process	37.432 %		0.90	0.26
GO:0048856	anatomical structure development	31.558 %		0.88	0.27
GO:0007165	signal transduction	33.618 %		0.91	0.27
GO:0006810	transport	29.215 %		0.86	0.28
GO:0048870	cell motility	8.257 %		0.85	0.35
GO:0048646	anatomical structure formation involved in morphogenesis	5.591 %		0.87	0.35
GO:0007267	cell-cell signaling	9.025 %		0.90	0.37
GO:0006464	cellular protein modification process	22.683 %		0.90	0.38
GO:0007010	cytoskeleton organization	6.861 %		0.87	0.44
GO:0055085	transmembrane transport	8.113 %		0.86	0.45
GO:0006520	cellular amino acid metabolic process	2.152 %		0.85	0.49
GO:0016192	vesicle-mediated transport	11.385 %		0.86	0.50
GO:0006605	protein targeting	4.010 %		0.85	0.52
GO:0030154	cell differentiation	22.095 %		0.84	0.54
GO:0000902	cell morphogenesis	5.297 %		0.78	0.58

Click on the TreeMap tab.

REVIGO		
Biological Process (37) Tag Clouds		
Scatterplot & Table Interactive Graph	TreeMap	

Download the csv file at the bottom of the page. You should see a csv file with the following content.

% WARNING - This is	exported REVIGO data useful only for the spe	cific purpose	of constructin	ng a TreeMap	visualization.		
% Do not use this tab	as it sets an extremely permissive						
% threshold to detect	while normally c>=0.4 is recommended.						
% To export a reduce	go to the Scatterplot & Table tab	and export t	o CSV from th	nere.			
term_ID	description	frequencyInD	uniqueness	dispensabilit	representative		
GO:000003	reproduction	0.77%	1	0	reproduction		
GO:0002376	immune system process	0.60%	0.946	0	immune system process		
GO:0006950	response to stress	4.58%	0.914	0	response to stress		
GO:0007165	signal transduction	6.62%	0.783	0.637	response to stress		
GO:0008283	cell proliferation	0.39%	0.897	0	cell proliferation		
GO:0009056	catabolic process	4.82%	0.938	0	catabolism		
GO:0016192	vesicle-mediated transport	1.09%	0.857	0	vesicle-mediated transport		
GO:0006605	protein targeting	0.69%	0.838	0.657	vesicle-mediated transport		
GO:0030705	cytoskeleton-dependent intracellular transpor	0.06%	0.855	0.238	vesicle-mediated transport		
GO:0055085	transmembrane transport	8.92%	0.838	0.684	vesicle-mediated transport		
GO:0006810	transport	17.62%	0.835	0.454	vesicle-mediated transport		
GO:0048870	cell motility	0.63%	0.762	0.287	vesicle-mediated transport		
GO:0040007	growth	0.32%	0.945	0	growth		
GO:0040011	locomotion	1.00%	0.946	0	locomotion		
GO:0042592	homeostatic process	1.66%	0.926	0	homeostatic process		
GO:0044403	symbiosis, encompassing mutualism through	0.17%	0.945	0	symbiosis, encompassing mutual	ism through parasitis	m
GO:0048856	anatomical structure development	2.54%	0.787	0	anatomical structure development	nt	
GO:0007568	aging	0.09%	0.787	0.648	anatomical structure development	nt	
GO:0050877	neurological system process	0.50%	0.945	0	neurological system process		
GO:0006399	tRNA metabolic process	2.50%	0.872	0.021	tRNA metabolism		
GO:0034641	cellular nitrogen compound metabolic process	34.14%	0.866	0.244	tRNA metabolism		
GO:0006412	translation	5.69%	0.831	0.614	tRNA metabolism		
GO:0006464	cellular protein modification process	7.73%	0.857	0.225	tRNA metabolism		
GO:0009058	biosynthetic process	31.61%	0.947	0.033	biosynthesis		
GO:0007010	cytoskeleton organization	0.79%	0.783	0.038	cytoskeleton organization		
GO:0030198	extracellular matrix organization	0.06%	0.768	0.397	cytoskeleton organization		
GO:0022607	cellular component assembly	2.48%	0.768	0.57	cytoskeleton organization		
GO:0007049	cell cycle	1.89%	0.828	0.086	cell cycle		
GO:0007267	cell-cell signaling	0.41%	0.818	0.197	cell cycle		
GO:0000278	mitotic cell cycle	0.56%	0.841	0.204	cell cycle		
GO:0006520	cellular amino acid metabolic process	5.59%	0.763	0.329	cell cycle		
GO:0044281	small molecule metabolic process	15.14%	0.861	0.139	cell cycle		

This can be summarized by the following table.

1 8	anatomical structure development	aging (GO:0007568)	
		using (denoted)	0.781
		anatomical structure development (GO:0048856)	0.781
2 1	biosynthesis	biosynthetic process (GO:0009058)	0.946
3 (catabolism	catabolic process (GO:0009056)	0.936
4 0	cell cycle	cellular amino acid metabolic process (GO:0006520)	0.757
		cell-cell signaling (GO:0007267)	0.813
		cell cycle (GO:0007049)	0.813
		mitotic cell cycle (GO:0000278)	0.836
		small molecule metabolic process (GO:0044281)	0.858
5 0	cell proliferation	cell proliferation (GO:0008283)	0.894
6 0	cytoskeleton organization	extracellular matrix organization (GO:0030198)	0.762
		cellular component assembly (GO:0022607)	0.762
		cytoskeleton organization (GO:0007010)	0.777
7 8	growth	growth (GO:0040007)	0.944
8 1	homeostatic process	homeostatic process (GO:0042592)	0.924
9 i	immune system process	immune system process (GO:0002376)	0.944
10 1	locomotion	locomotion (GO:0040011)	0.944
11 I	neurological system process	neurological system process (GO:0050877)	0.944
12 I	protein targeting	cell motility (GO:0048870)	0.767
		transport (GO:0006810)	0.847
		transmembrane transport (GO:0055085)	0.848
		vesicle-mediated transport (GO:0016192)	0.865
		protein targeting (GO:0006605)	0.869
13 I	reproduction	reproduction (GO:0000003)	1
14 I	response to stress	signal transduction (GO:0007165)	0.778
		response to stress (GO:0006950)	0.911
	symbiosis, encompassing	symbiosis, encompassing mutualism	
15 i	mutualism through parasitism	through parasitism (GO:0044403)	0.944
16 t	tRNA metabolism	translation (GO:0006412)	0.827
		cellular protein modification process (GO:0006464)	0.853
		cellular nitrogen compound metabolic process (GO:0034641)	0.862
		tRNA metabolic process (GO:0006399)	0.868

This same data can be represented in a treemap.

protein targeting protein targeting protein targeting vesicle-mediated transport	protein transn protein transp	n targeting hembrane transport ntargeting ort	protein targeting cell motility	cytoskeleton organization cytoskeleton organization cytoskeleton organization cellular component assembly	cytoskeleton organization extracellular matrix organization	response to stress response to stress	response to stress signal transduction	anatomic. structure developm aging	al anatomical structure ent development anatomical structure development
cell cycle small molecule metabolic process cell cycle mitotic cell cycle	cell cyr cell cyr cell cyr cell-ce	cle cle cle Il signaling	cell cycle cellular amino acid metabolic process	reproduction reproduction biosynthesis biosynthetic process	immune sy immune sy locomotior locomotior	stem process stem process	symbiosis, encompass mutualism parasitism symbiosis, encompass mutualism parasitism	ing through ing through	catabolism catabolic process
tRNA metabolism tRNA metabolic process		tRNA metabolism cellular protein modificatio	on process	growth	neurologic	al system process	homeostat homeostat	ic process ic process	
tRNA metabolism cellular nitrogen compound metabol process	ic	tRNA metabolism translation		growin	- Hear orogic		cell prolife cell prolife	ration ration	

Representative	Description	term ID	
anatomical structure	aging	GO:0007568	0.7810
development	anatomical structure dev	GO:0048856	0.7810
biosynthesis	biosynthetic process	GO:0009058	0.9460
catabolism	catabolic process	GO:0009056	0.9360
cell cycle	cell cycle	GO:0007049	0.8230
	cell-cell signaling	GO:0007267	0.8130
	cellular amino acid metab	GO:0006520	0.7570
	mitotic cell cycle	GO:0000278	0.8360
	small molecule metabolic	GO:0044281	0.8580
cell proliferation	cell proliferation	GO:0008283	0.8940
cytoskeleton organization	cellular component assem	GO:0022607	0.7620
	cytoskeleton organization	GO:0007010	0.7770
	extracellular matrix orga	GO:0030198	0.7620
growth	growth	GO:0040007	0.9440
homeostatic process	homeostatic process	GO:0042592	0.9240
immune system process	immune system process	GO:0002376	0.9440
locomotion	locomotion	GO:0040011	0.9440
neurological system proc	neurological system proc	GO:0050877	0.9440
protein targeting	cell motility	GO:0048870	0.7670
	protein targeting	GO:0006605	0.8690
	transmembrane transport	GO:0055085	0.8480
	transport	GO:0006810	0.8470
	vesicle-mediated transport	GO:0016192	0.8650
reproduction	reproduction	GO:000003	1.0000
response to stress	response to stress	GO:0006950	0.9110
	signal transduction	GO:0007165	0.7780
symbiosis, encompassing	symbiosis, encompassing	GO:0044403	0.9440
tRNA metabolism	cellular nitrogen compoun	GO:0034641	0.8620
	cellular protein modificati	GO:0006464	0.8530
	translation	GO:0006412	0.8270
	tRNA metabolic process	GO:0006399	0.8680

The GO terms can be visualized using **NaviGo**.

	Ar	n analytic	tool for Ge	ne Ontology	/ Visualizatio	on and Simil	arity
GO Parents	GO S	iet GO	Enrichment	Protein Set	How to Use	Contact Us	Lab
Notice th	e uploa	aded file 008283,GO:	format shoul	d be:	6958.		
Please en i.e: Biol	ter th ogical	e go terms Process,	s that belong Molecular Fu	to the same nction and Ce	category llular Compon	ent	
Please en i.e: Biol	ter the ogical Res	e go terms Process, et	s that belong Molecular Fu	to the same nction and Ce	category llular Compon	ent	
Please en i.e: Biol Load Sample	ter the ogical Res rms:	e go terms Process, et	GO:0048856 ×	to the same nction and Ce	category llular Compon	ent GO:0030154 ×	GO:0034641 ×
Please en i.e: Biol Load Sample Input GO Te GO:0030709 GO:0007263	ter the ogical Res rms: 5 × GO 7 × GO	e go terms Process, et :0007165 × :0002376 ×	GO:0048856 × GO:0006464 ×	to the same nction and Ce GO:0006810 × GO:0022607 ×	GO:0009058 × GO:0065003 ×	GO:0030154 × GO:0048646 ×	G0:0034641 × G0:0006950 ×
Please en i.e: Biol Load Sample Input GO Te GO:0030709 GO:0007267 GO:0016192	ter the ogical Reserves rms: 5 × GO 7 × GO 2 × GO	e go terms Process, et :0007165 × :0002376 × :0008283 ×	GO:0048856 × GO:006464 × GO:0055085 ×	to the same nction and Ce GO:0006810 × GO:0022607 × GO:0009056 ×	GO:0009058 × GO:0065003 × GO:0000003 ×	GO:0030154 × GO:0048646 × GO:0050877 ×	GO:0034641 × GO:0006950 × GO:0006605 ×
Please en i.e: Biol Load Sample Input GO Te GO:0030709 GO:0007267 GO:0016192 GO:0042592	ter the ogical Res rms: 5 × GO 7 × GO 2 × GO 2 × GO	e go terms Process, et :0007165 × :0002376 × :0008283 × :0006520 ×	GO:0048856 × GO:006464 × GO:0055085 × GO:0030198 ×	GO:0006810 × GO:0022607 × GO:0009056 × GO:0007010 ×	GO:0009058 × GO:0009058 × GO:0065003 × GO:0000003 × GO:0006412 ×	GO:0030154 × GO:0048646 × GO:0050877 × GO:0000278 ×	G0:0034641 × G0:0006950 × G0:0006605 × G0:0044281 ×
Please en i.e: Biol Load Sample GO:0030709 GO:0007267 GO:0016197 GO:0042597 GO:0044403 GO:0044403	ter tho ogical rms: 5 × GO 7 × GO 2 × GO 2 × GO 3 × GO 7 × GO	e go terms Process, et :0007165 × :0002376 × :0008283 × :0006520 × :0048870 × :0007049 ×	GO:0048856 × GO:006464 × GO:0055085 × GO:0000902 ×	GO:0006810 × GO:0022607 × GO:0009056 × GO:0007010 × GO:0006399 ×	GO:0009058 × GO:0009058 × GO:0065003 × GO:0006412 × GO:0051276 ×	GO:0030154 × GO:0048646 × GO:0050877 × GO:0000278 × GO:0007568 ×	G0:0034641 × G0:0006950 × G0:0006605 × G0:0044281 × G0:0040011 ×

Results are shown below.

Navi	GO Resul	ts				
Home	GO Set Result	Network Visualization	Multidimensional Scaling Visualiza	ation		
				вр: ●	MF: C	CC: 🛑
GO terms	s input by the u	ser:				
G0:0036 G0:0007 G0:0044 G0:0006 G0:0036 G0:0036 G0:0037 G0:0037 G0:0007 [?] Open I	0705 1 7165 1 3856 1 3058 1 9058 1 9154 1 4641 1 7267 1 9276 1 BP Visualizer 1					
GO tei	m Pairwise	Scores Results	5			
Go term pa dimensiona	irwise scores are lis al scaling from the ta	ted in the table below and a abs above.	also visualized as a network and with	a bubble map with	n the multi-	
GO Term	Pair Scores					
For all the i scores, GO Results car	nput GO term pairs, Co-occurence (CA be downloaded in	3 GO semantic similarity so S), Pubmed (PAS), protein Ir a CSV file .	cores, Resnik, Lin's (LSS), Relevance nteraction (IAS), are computed. For th	e (RSS), and 3 GO and the definition of the	associations scores, see	here .
B :Bioloc	ical Process. M :	Molecular Function, 💽 :Ce	ellular Component	[?] High		Low

GO term1	GO term2	Resnik	LSS	RSS	CAS	PAS	IAS	Common Parents
B GO:0030705	B GO:0007165	-0.082	-0.039	0.008	0.020	0.001	21.044	Show parents[+] vis
B GO:0030705	B GO:0048856	-0.082	-0.041	0.009	0.032	n/a	n/a	Show parents[+] vis
B GO:0030705	B GO:0006810	1.050	0.519	0.473	0.149	0.003	12.565	Show parents[+] vis
B GO:0030705	B GO:0009058	-0.082	-0.048	0.010	0.008	0.000	n/a	Show parents[+] vis
B GO:0030705	B GO:0030154	-0.082	-0.037	0.008	0.050	0.000	12.206	Show parents[+] vis
B GO:0030705	B GO:0034641	-0.082	-0.048	0.010	0.004	n/a	26.175	Show parents[+] vis
B GO:0030705	B GO:0007267	-0.082	-0.033	0.007	0.054	n/a	10.701	Show parents[+] vis

Click on Open BP Visualizer to see the network of terms.

Single GO terms can also be visualized, as shown below.

See <u>https://link.springer.com/protocol/10.1007/978-1-4939-3743-1_15</u> for a list of GO visualization tools.