
Jun 06, 2019 Version 2

Machine learning approach yields epigenetic biomarkers of food allergy: A
novel 13-gene signature to diagnose clinical reactivity V.2

PLOS One

DOI

dx.doi.org/10.17504/protocols.io.x7pfrmn

Ayush Alag

The Harker School

Ayush Alag

1

1

DOI: dx.doi.org/10.17504/protocols.io.x7pfrmn

External link: https://doi.org/10.1371/journal.pone.0218253

Protocol Citation: Ayush Alag 2019. Machine learning approach yields epigenetic biomarkers of food allergy: A novel 13-gene

signature to diagnose clinical reactivity. protocols.io https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Manuscript citation:

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: February 15, 2019

Last Modified: June 06, 2019

Protocol Integer ID: 20431

Keywords: Machine Learning, Food Allergy, DNA Methylation, Gene Signature

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 1/45

https://doi.org/10.1371/journal.pone.0218253
https://dx.doi.org/10.17504/protocols.io.x7pfrmn
https://www.protocols.io/researchers/ayush-alag
https://www.protocols.io/researchers/ayush-alag
https://www.protocols.io/researchers/ayush-alag
https://dx.doi.org/10.17504/protocols.io.x7pfrmn
https://doi.org/10.1371/journal.pone.0218253
https://dx.doi.org/10.17504/protocols.io.x7pfrmn
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Abstract

Current laboratory tests have a less than 50% accuracy in distinguishing between people who have food allergies

�FA) and those who are merely sensitized to foods, resulting in the use of expensive and potentially dangerous

Oral Food Challenges. Our study presents a purely-computational machine learning approach, conducted using

DNA Methylation �DNAm� data, to accurately diagnose food allergies and find genes that are strong biomarkers of

the disease.

We built two deep learning classifiers with twelve CpG-input features each that achieved perfect accuracy and an

AUROC of 1 on the completely hidden cross-validation cohort. In addition, 24 additional classifiers were created

that each had an average cross-validation accuracy of 98.35%. These 26 classifiers yielded a total of 18 unique

CpGs, which mapped to 13 genes that are strong epigenetic biomarkers of FA.

Biological enrichment on the 13-gene signature yielded new insights. Notably, our FA-discriminating genes were

strongly associated with the immune system, which helps validate our findings. Seven of the 13 genes overlapped

with previous food-allergy and DNAm studies.

Previous studies have also created a perfect classifier for this dataset, but they used a 96�CpG input feature set

built on both data-driven and a priori biological insights. Our study is an improvement on previous work because it

maintains a perfect classification accuracy using only 18 highly discriminating CpGs �0.005% of the total available

features). In machine learning, simpler models, as used in our study, are preferred over more complex ones (all

other things being equal).

In addition, our completely data-driven approach eliminates the need for \textit{a priori} information and allows for

generalizability to DNAm classification problems in other disease areas, which may result in novel gene

associations or accurate diagnostic tests for those diseases.

Guidelines

The DNA Methylation data analysis has been done using the Java programming language. To follow the steps it is

best to create an Eclipse project.

Before start

1. Download the Eclipse IDE (https://www.eclipse.org/downloads/)

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 2/45

https://www.eclipse.org/downloads/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

1 Create an Eclipse project. Download weka jar files from

https://www.cs.waikato.ac.nz/ml/weka/downloading.html . The Eclipse project should

have the src files with the Java code downloaded in the previous step. Create a directory

extjar and put the two reference jar files from Weka (weka-src.jar and weka.jar).

Download RBFNetwork.jar from https://jar-download.com/artifact-search/RBFNetwork

and add it to the extjar directory. Download libsvm.jar from https://jar-

download.com/download-handling.php. Download the data.jar file and place it within the

main project. This directory should have the input and output folders with many sub

folders. The doc folder is optional and creates the generated JavaDoc for the project.

JavaDoc can be generated by going to Eclipse � Project � Generate JavaDoc.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 3/45

https://www.cs.waikato.ac.nz/ml/weka/downloading.html
https://jar-download.com/artifact-search/RBFNetwork
https://jar-download.com/download-handling.php
https://jar-download.com/download-handling.php
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 4/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

2 Next, we will validate that the CpG data that has already been separated into Food

Allergy, Sensitized, and Non-Allergic samples have been downloaded correctly. Expand

the data/input/gse59999 folder and verify that there are three files:

allergy-59999-datasets.txt 215 MB contains 30 rows by 405,659 columns

nonallergic-59999-datasets.txt 98.9 MB contains 14 rows by 405,659 columns

sensitized-59999-datasets.txt 215 MB contains 30 rows by 405,659 columns

From within Eclipse, run the main program for com.allergezy.fa.util.FileUtil. You should

see the output shown below.

Note the number of rows and columns and the validation check.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 5/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The research was conducted using a dataset found in the Gene Expression Omnibus

�GEO)under accession id GSE59999. The 71 patient samples in this dataset consisted of

29 patients with FA (tested positive on OFCs), 29 patients who were sensitized but not

food-allergic, and 13 patients who were neither sensitized nor allergic. Each sample is

associated with a DNAm profile that was taken from mononuclear blood cells and

consisted of normalized Beta values ranging from 0 (completely unmethylated) to 1 (fully

methylated) at 405,658 CpG islands distributed across the genome.

3 In this step, we will create 8-fold test/train/hidden samples.

The 58 samples are randomly split into three datasets: 40 samples for training, 10

samples for testing, and 8 completely hidden samples for cross-validation. Half of the

samples in each of the three datasets were children with food allergies and the other half

were those that were food-sensitized but not food-allergic. To avoid potential bias, we

created eight random splits, shuffling the samples across the three datasets each time

such that each of the 58 samples was in the hidden dataset at least once.

The logic is implemented in com.allergezy.fa.kfold.KFoldDatasetGenerator. Run the main

method in this class to see an output similar to below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 6/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

This program produces an output file data/input/gse59999/k401008/gse59999-kfold-

cases.txt as shown below.

The file data/input/gse59999/k401008/gse59999-kfold-cases-final.txt is the final

version of this 8-fold split that is used in the rest of the study.

Output from running com.allergezy.fa.kfold.KFoldDatasetGenerator.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 7/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Below is the content of the data/input/gse59999/k401008/gse59999-kfold-cases-

final.txt file.

Each sample appears at least once in the hidden set. In addition, for every case there are

40 training samples. There is an equal number of food-allergic and food-sensitized

samples in each dataset and in each case.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 8/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

To verify that this file can be accessed, run the main method for

com.allergezy.fa.kfold.KFoldDatasetInfo. This file follows the Singleton design pattern

and provides information on which samples are in the training, test, and hidden datasets

for each of the eight cases. You should see the following output.

The distribution of the samples can be seen in the following table.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 9/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

4 DNAm datasets are characterized as having a small number of samples but a very high

number of feature dimensions �HDLSS�. To prevent overfitting and increase

generalization, it is important to condense the feature list relative to the number of

samples available. Computationally, it is very expensive to evaluate the more than 400K

CpG features individually. Therefore, in order to limit the evaluation size and begin with a

list of potentially highly-relevant CpG points, we used the NCBI GEO2R tool to obtain a

prioritized list of CpG features differentially expressed across the two groups. For each

of the eight independent cases, we split the forty training samples into two cohorts, one

with allergic patients and the other with sensitized patients.The GEO2R tool was used to

derive eight lists of 100 CpGs each, one for each of the eight cases.

The screenshot below shows the use of the GEO2R tool to create two cohorts of 20

samples each for the first case.

Clicking on

The full signature for the eight cases is in data/input/gse59999/geo2r/Geo2R-cpgs.txt

file.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 10/45

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE59999
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Below are the first twenty lines of the file data/input/gse59999/geo2r/Geo2R-cpgs.txt

file. This will be used in the next few steps.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 11/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

5 Next, the eight lists were combined together, which resulted in 636 unique CpGs, the

count being less than 800 as some of the CpGs were repeated across the eight cases.

To map the CpGs to genes, we use the output from GEO2R contained in the file

data/input/gse59999/geo2r/Geo2r-gse5999-full-sign.txt. The Singleton class

com.allergezy.fa.geo2r.CPGAnnotations maps a CpG to genes using this file. Run the

main method in the class com.allergezy.fa.geo2r.CPGAnnotations. You should see the

output similar to the screen shot below.

The class com.allergezy.fa.geo2r.Geo2rCpgInfo computes the overlap between the CpGs

from the GEO2R output. Running the main method produces the output shown below.

The file data/input/gse59999/geo2r/geo2RfeatureScoring.txt contains the result of this

analysis.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 12/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

This is summarized as shown below

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 13/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Note that this ranking really has no material significance in our methodology, since we

evaluated all the unique 636 CpGs independently. It does provide some insights into

features highlighted by GEO2R and those that appeared in our final CpG signature. The

20% overlap we found between the CpGs across the eight lists seems to suggest that

the examples do have an effect on the CpGs that are differentially expressed between

the two cohorts (when GEO2R is used). Thus, averaging the results across the eight

independent runs, which is performed throughout the rest of the paper, should help in

avoiding any potential biases, due to the distribution of the samples across the training,

test, and hidden datasets.

6 Next, we will create smaller dataset files that contain the machine learning examples with

636 CpG values as columns.

com.allergezy.fa.dataset.DatasetCreatorForEachCase -- generates the file that has the

examples for each case. The output from the program is shown below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 14/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

In the input/gse59999/ml-data there are eight files case-0.txt, case-1.txt, and so on for

the eight folds.

Attached is a screen shot of a part of the first file case-0.txt.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 15/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

7 For each case, and for each of the 636 unique CpGs, we built four different machine

learning models: Decision Trees �DT�, Logistic Regression �LR�, Radial Basis Function

�RBF�, and a Multi-Layer Perceptron �MLP�, a deep learning network with two hidden

layers of ten nodes each. Each predictive model only used one CpG and was built on the

training data. For each case and each feature, the classifier with the highest testing

accuracy was selected. Finally, the average hidden data (cross-validation set) accuracy

across the eight independent cases was computed. 636 of these accuracy scores (one

for each CpG) and 20,352 models �8 independent cases x 636 features x 4 classifiers)

were created in total using this process, for the single input case.

com.allergezy.fa.feature.SingleFeatureScoringRunner is the class that runs this

computation. A few class to note

com.allergezy.fa.weka.WekaHelper interfaces with the Weka APIs for creating models

Logic for writing details as part of the learning are SummaryRunResultWriterImpl --

summary of results

DetailedRunResultWriterImpl -- detailed output of each model,

BestModelForCasesResultWriterImpl - best model.

Run the main method com.allergezy.fa.feature.SingleFeatureScoringRunner. You should

see an output similar to

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 16/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

This program writes output to data/output/singlefeature/kfoldresult. Subdirectories

case0, case1, …, case7 has results for the eight folds. Within each directory are four sub

directories: DECISION_TREE, LOGISTIC_REGRESSION, MLP, RBF. Within each directory

are detailed results for each model and results -- featscore0.txt, featscore1.txt, …..,

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 17/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 18/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The class com.allergezy.fa.feature.BestFeatureIdentifierUsingHiddenTestScores

computes the average score for each feature across the eight cases.

The following is a screen shot of the output file featureScoring.txt

com.allergezy.fa.feature.BestFeatureIdentifierUsingHiddenTestScores

Output from the console

Output file data/output/singlefeature/kfoldresult.bestFeatureScoresCpg.txt

Attached is the screenshot of the final file, sorted by average hidden test accuracy.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 19/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The following graph summarizes the results.

The top CpGs with associated genes are

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 20/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

8 We sought to increase the number of features used by the classifier while still avoiding

over-fitting and encouraging generalization. Therefore, we selected the first eighteen

CpGs, based on the accuracy scores computed above, and combined them two at a

time, followed by three at a time, and so on until combinations of twelve were reached.

Given the large number of potential combinations, each model was limited to a small

subset of strong CpG-lists, to which a new input feature was added. On an average, we

tried about 200 unique combinations for a given number of input features. Again, each

unique input feature combination set was run 4 � 8 � 32 times, to account for the four

different classifier methods and 8 independent sample-distribution "cases".

The class com.allergezy.fa.multifeature.casegenerator.MultiFeatureCasesGenerator is

used to create next set of cases to be tried.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 21/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

9 For a given number of input features, the models were ranked using their average

accuracy scores on hidden data cohorts (described above). Odd numbers of models,

starting from 1 to 101, were combined together using a simple voting scheme, i.e., each

model independently predicted whether a sample was classified as FA or sensitized and

the final prediction was the majority of predictions made across the different models.

The class com.allergezy.fa.kfold.verify.VerifyWekaDatasetRunner runs the set of cases

specified in the data/output/multifeature/setup/summary.txt file. A screen shot of an

example file is shown next.

This class has a visitor BestModelForCasesResultWriterImpl configured to calculate

majority prediction.

Iterate different combinations of CpG features using the summary.txt file as input, run the

results, select the best models, and try new combinations adding one feature at a time.

The results for various combinations are in the directory

data/output/multfeature/result/Final.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 22/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 23/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

10 The file com.allergezy.fa.rawdata.RawCpGDataExtractor can extract raw CpG values for

a CpG across the samples and can be used for generating data plots. Here is an example

file.

com.allergezy.fa.featureanalyzer.CpGFrequencyFeatureAnalyzer

Analyzes the frequency of various CpG across the summary file

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 24/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

11 Gene set analysis can provide biological context, as well as insights into disease

mechanisms and possible treatments. Biological enrichment was performed by applying

Illuminaʼs BaseSpace Correlation Engine to the 13-gene list. To understand these genes

better we identified tissues where the genes were expressed, found associated

biological pathways, used gene ontology concepts to identify functionally-related gene

sets, connected the 13-gene list to the Broad positional gene sets, and connected the

gene signature to protein families.

The 13-gene signature was imported into Illumina BaseSpace Correlation Engine

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 25/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 26/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 27/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

12 GO provides a framework for analyzing a group of co-expressed genes and provides

insights into whether particular genes are involved in diseases. Similar to other

ontologies, GO consists of terms and relationships represented in a directed acylic

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 28/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

graph. GO focuses on using the terms in the ontology to describe gene functions. In GO,

gene function is classified along three categories: molecular functions, cellular

components, and biological processes.

The GO Enrichment Analysis Tool was used to find GO terms associated with the 13�

gene signature. Enter the following gene list as shown

RNF213

SARS

ZNF252

TMED10P

ABCF2

TIMP2

MAFK

CD7

PANX1

CTBP2

SLC24A2

ARID5B

KIF13B

FAM190B

After computation the results are shown below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 29/45

http://www.geneontology.org/
http://geneontology.org/page/go-enrichment-analysis
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Follow the same procedure for the other two options: molecular function and cellular

component, as shown below.

The results from this analaysis is shown below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 30/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Next, the Generic Gene Ontology �GO� Term Mapper tool from Princeton University to

map granular GO annotations to a higher-level set of terms, thus providing a broad set of

categories.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 31/45

https://go.princeton.edu/cgi-bin/GOTermMapper
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Make sure to select HomoSapiens for the Organism as shown

The results are shown below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 32/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The results are summarized in the following table.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 33/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The resulting GO terms are

GO�0030705

GO�0007165

GO�0048856

GO�0006810

GO�0009058

GO�0030154

GO�0034641

GO�0007267

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 34/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

GO�0002376

GO�0006464

GO�0022607

GO�0065003

GO�0048646

GO�0006950

GO�0016192

GO�0008283

GO�0055085

GO�0009056

GO�0000003

GO�0050877

GO�0006605

GO�0042592

GO�0006520

GO�0030198

GO�0007010

GO�0006412

GO�0000278

GO�0044281

GO�0044403

GO�0048870

GO�0000902

GO�0006399

GO�0051276

GO�0007568

GO�0040011

GO�0040007

GO�0007049

Next, the REVIGO, an online tool that summarizes and visualizes lists of gene ontology

terms, to find a representative set of terms using a clustering algorithm.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 35/45

http://revigo.irb.hr/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The frequency and uniqueness of the GO terms can be seen below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 36/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Click on the TreeMap tab.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 37/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Download the csv file at the bottom of the page. You should see a csv file with the

following content.

This can be summarized by the following table.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 38/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

This same data can be represented in a treemap.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 39/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 40/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

The GO terms can be visualized using NaviGo.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 41/45

http://kiharalab.org/web/navigo/views/goset.php
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Results are shown below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 42/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Click on Open BP Visualizer to see the network of terms.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 43/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

Single GO terms can also be visualized, as shown below.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 44/45

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

See https://link.springer.com/protocol/10.1007/978�1�4939�3743�1_15 for a list of GO

visualization tools.

protocols.io | https://dx.doi.org/10.17504/protocols.io.x7pfrmn June 7, 2019 45/45

https://link.springer.com/protocol/10.1007/978-1-4939-3743-1_15
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.x7pfrmn

