Lysozyme-based removal of bacteria from cultures of the marine heterotrophic flagellate Cafeteria roenbergensis V.2

Monica Berjon-Otero¹, Sarah Duponchel¹, Matthias Fischer¹
¹Max Planck Institute for Medical Research

ABSTRACT
This protocol allows to remove bacteria from cultures of the marine heterotrophic nanoflagellate Cafeteria roenbergensis without affecting flagellate viability. Bacterial removal is essential to reduce contamination and background signal in subsequent microscopy analysis, protein extraction, DNA extraction or other applications. With some changes, this protocol could be adapted to different types of protists.

DOI
dx.doi.org/10.17504/protocols.io.88ihzue

PROTOCOL CITATION
Monica Berjon-Otero, Sarah Duponchel, Matthias Fischer 2019. Lysozyme-based removal of bacteria from cultures of the marine heterotrophic flagellate Cafeteria roenbergensis. protocols.io
https://dx.doi.org/10.17504/protocols.io.88ihzue

LICENSE
This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED
Nov 12, 2019

LAST MODIFIED
Nov 12, 2019

PROTOCOL INTEGER ID
29674
Preparation of *Cafeteria roenbergensis* culture

1. Determine the cell density of *Cafeteria roenbergensis*: stain 10 µL of a Cafeteria culture with 1 µL of Lugol's acid iodine solution and count the cells on a haemocytometer (Neubauer Chamber).

2. Dilute the *Cafeteria* culture to 5 x 10^5 cells/mL with f/2 medium + 0.03% (w/v) yeast extract. Incubate overnight at 22-25 °C.

3. Determine the flagellate concentration and use approx. 8 x 10^7 *Cafeteria* cells/sample.

4. Centrifuge flagellates at 4,500 g, 5 min, room temperature in 50 mL Falcon tubes. Flagellates will be in the pellet.

5. Resuspend the cell pellets in 1.8 mL of 1X PBS and transfer them into 2 mL microfuge tubes.

Citation: Monica Berjon-Otero, Sarah Duponchel, Matthias Fischer (11/12/2019). Lysozyme-based removal of bacteria from cultures of the marine heterotrophic flagellate *Cafeteria roenbergensis*. https://dx.doi.org/10.17504/protocols.io.88ihzue
Lysozyme and DNaseI treatment

6 Add 40 μL of 50 mg/mL freshly prepared lysozyme in 1X PBS (1 mg/mL final concentration). Incubate for 1 hour at room temperature.

Optionally, you can also add 5 mM EDTA here. EDTA increases the activity of lysozyme against Gram negative bacteria, but also negatively affects Cafeteria mobility.

7 Add 200 μL of 10 mg/mL freshly prepared DNaseI in 1X PBS (1 mg/mL final concentration, 2 U/μL) and 11 μL of 1M MgCl₂ (5 mM final concentration). Incubate for 30 min at 34°C in a thermomixer with shaking.

8 Centrifuge at 5,000 g, 6 min, 20°C

Optiprep purification

9 Resuspend the pellets in 100 μL of 1X gradient buffer (0.5 M NaCl in 1X PBS). Pipette up and down several times to break up aggregates.

10 Up to 1 x 10⁹ Cafeteria cells can be loaded per SW28 centrifuge tube. Add 1X gradient buffer up to 0.5 - 1 mL final resuspended cell volume.

11 Load the sample on top of a two-step Optiprep cushion cushion, 20% (w/v) Optiprep at the bottom of the tube and 10% (w/v) Optiprep on top of the 20% layer (both Optiprep solutions are prepared in 1X gradient buffer).

12 Centrifuge the tubes in an ultracentrifuge, Beckman SW28 rotor, at 20,000 g, 20 min, 20°C, with slow braking.

13 Recover Cafeteria cells from the gradient, at the interphase between the 10% and 20% Optiprep layers.

Recovery of Cafeteria culture

14 Dilute the recovered Cafeteria cells at least twofold with F/2 medium (no yeast extract)

15 Dilute the culture 25fold or 50fold with F/2 and stain 10 μL of this dilution with 1 μL of Lugol’s acid iodine solution

Load the sample on a haemocytometer to quantify Cafeteria cells and remaining bacteria.
Dilute *Cafeteria* cells to the desired density. If no or little dilution is required, you can centrifuge again for 6 min at 5,000 g, 20°C and resuspend the cells in F/2 to remove all the remaining Optiprep.