Loop L2 (even level) type IIS cloning - pCs-ye vectors

Susana Sauret-Gueto1, Eftychis Frangedakis2, Nicola West2, Marta Tomaselli3, Patron2, Marius Rebmann2, Jim Haseloff2

1University of Cambridge; 2Plant Sciences, University of Cambridge, OpenPlant; 3University of Cambridge, Open Plant

Protocol Citation: Eftychis Frangedakis, Susana Sauret-Gueto, Anthony West, Marta Tomaselli, Nicola Patron, Marius Rebmann, Jim Haseloff 2019. Loop L2 (even level) type IIS cloning - pCs-ye vectors. \textit{protocols.io} https://dx.doi.org/10.17504/protocols.io.4wcgxaw

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working
We use this protocol and it's working

DOI: dx.doi.org/10.17504/protocols.io.4wcgxaw

ABSTRACT

https://doi.org/10.1111/nph.15625

MATERIALS

- Sterile water Contributed by users
- dATP, 100mM, 25uMoles Promega Catalog #U1205
- BSA, molecular biology grade, 20 mg/ml New England Biolabs Catalog #B9000S
- Tango Buffer Thermo Fisher Scientific Catalog #BY5
- T4 DNA ligase Thermo Fisher Scientific Catalog #15224041
- LguI (SapI) Thermo Fisher Scientific Catalog #ER1931
1 Determine DNA parts concentration with spectrophotometry (Nanodrop).

2 Prepare aliquots for DNA parts to be assembled at a concentration of 15 nM and of the pCs-pe vector at a concentration of 7.5 nM.

To calculate the concentration needed for each part to assemble (not the backbone) in ng/µL, divide the length of the plasmid where they are cloned by 100. For the backbone, divide the plasmid length by 200. In this way you can prepare aliquots of your parts and backbones and add 1 µL of each one to the plasmid mix.

3 Prepare the Loop assembly Even Level reaction MM according to Table

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterile water</td>
<td>2</td>
</tr>
<tr>
<td>10x Tango buffer (Thermo Fisher)</td>
<td>1</td>
</tr>
<tr>
<td>1 mg/mL bovine serum albumin (NEB)</td>
<td>0.5</td>
</tr>
<tr>
<td>T4 DNA ligase (5 U/µL) (Thermo Fisher)</td>
<td>0.25</td>
</tr>
<tr>
<td>10mM ATP (SIGMA)</td>
<td>1</td>
</tr>
<tr>
<td>SapI (Lgul) (5 U/µL) (Thermo Fisher)</td>
<td>0.25</td>
</tr>
<tr>
<td>Final volume</td>
<td>5</td>
</tr>
</tbody>
</table>
4 Prepare plasmids mix for each reaction, by adding in a 0.2 mL tube, 1 μL of each DNA part aliquot (see step 2), 1 μL of the pCs-pe vector and sterile water up to 5 μL. Mix well.

5 Add 5 μL of master mix to the 5 μL of plasmids mix, to a final volume of 10 μL. Mix well. If more than 4 DNA parts are to be assembled into a pCk-pe vector, reduce the water volume in the MM by 1 μL for each extra 1 μL of DNA part added in the plasmids mix.

6 Place samples in a thermocycler and use the following program:
 Assembly: 26 cycles of 37 °C for 3 min and 16 °C for 4 min.
 Termination and enzyme denaturation: 50 °C for 5 min and 80 °C for 10 min.

7 Transform 20 μL of chemically competent E. coli cells (transformation efficiency of 1 × 10^7 transformants/μg plasmid DNA) using 2 μL of the Loop assembly reaction and then plate on LB agar plates containing 100 μg/mL spectinomycin.

8 Incubate O/N at 37 °C.

9 Colonies with white color are likely to contain the vector with the insert while yellow color colonies will contain the empty vector.

10 Confirm the presence of the correct insert with Sanger sequencing using the primers pC_F and pC_R