

Dec 03, 2019

Version 2

Coop L1 (odd level) Bsal type IIS cloning into pCk vectors V.2

Version 1 is forked from Loop L1 (odd level) type IIS cloning - pCk-ye vectors

DOI

dx.doi.org/10.17504/protocols.io.92gh8bw

Eftychis Frangedakis¹, Susana Sauret-Gueto², Anthony West³, Nicola Patron⁴, Marta Marta Tomaselli², Marius Rebmann², Jim Haseloff²

¹University of Cambridge; ²Plant Sciences, University of Cambridge, OpenPlant;

OpenPlant Project

Susana Sauret-Gueto

Plant Sciences, University of Cambridge, OpenPlant

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.92gh8bw

³previously at Earlham Institute, Norwich; ⁴Earlham Institute, Norwich

Protocol Citation: Eftychis Frangedakis, Susana Sauret-Gueto, Anthony West, Nicola Patron, Marta Marta Tomaselli, Marius Rebmann, Jim Haseloff 2019. Loop L1 (odd level) Bsal type IIS cloning into pCk vectors. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.92gh8bw

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: December 03, 2019

Last Modified: December 03, 2019

Protocol Integer ID: 30504

Keywords: iis cloning into pck vectors protocol, dna circuit, pck vectors protocol, loop assembly, cloning, iis cloning, loop I1, bsai, recursive fabrication

Abstract

Protocol based on:

Pollak B, Cerda A, Delmans M, et al (2019) Loop assembly: a simple and open system for recursive fabrication of DNA circuits. New Phytol 222:628–640

https://doi.org/10.1111/nph.15625

Materials

MATERIALS

Bsal - 5,000 units New England Biolabs Catalog #R0535L

T4 DNA Ligase - 20,000 units New England Biolabs Catalog #M0202S

Sterile water

BSA, molecular biology grade, 20 mg/ml New England Biolabs Catalog # B9000S

☒ 10X NEB T4 DNA ligase buffer **New England Biolabs**

Troubleshooting

Loop pCk vectors

1

Loop vectors for nuclear transformation: pCks (A) and for chloroplast transformation pCkchlo (B).

Loop fusion sites in the pCk vectors to assemble different L0 parts into a L1 construct using a pCk vector and Bsal are: A (GGAG) and F (CGCT).

Loop fusion sites in the pCk vectors to assemble different L1 constructs into a L2 construct using a pCs vector and SapI are: a (ATC), b (GCA), d (TAC), e (CAG) and o (GCT). Left (LB) and right border (RB) repeats from nopaline C58 T-DNA for Agrobacterium-mediated nuclear transformation. KanR: kanamycin bacterial resistance cassette. LacZ: lacZa cassette for blue-white screening of colonies.

Example of assembly of LO parts into a transcription unit (L1)

2

Loop assembly of multiple L0 parts into a transcription unit (L1) using a pCk plasmid and Bsal.

Protocol for assembly of LO parts into a transcription unit (L1)

- Determine the concentrations of each DNA plasmid needed (L0 plasmids and pCk acceptor plasmid) by spectrophotometry (Nanodrop).

 In the example in step 2, determine concentration of plasmids L0_PROM5, L0_CDS, L0_3TERM and pCk1.
- Prepare aliquots for each plasmid at a concentration of 15 nM for the L0 plasmids and of 7.5 nM for the acceptor pCk vector. With this final concentration, 1 μ L of each plasmid is added to the plasmids mix (see step 6).

To calculate the concentration in ng/μL:

- For a final concentration of 15 nM, the concentration in [ng/ul] equals N (the length in bp of the plasmid) divided by 110. This is an approximation of the formula: $15\cdot10^{\circ}(-9)\text{mol/L} \times ((607.4 \times \text{N}\) + 157.9)\text{g/mol} \times 10^{\circ}(-6)\text{L/µL} \times 10^{\circ}9\text{ng/g} = \text{concentration} \pmod{\mu\text{L}}$
- For a final concentration of 7.5 nM, the concentration in [ng/ul] equals N divided by 220.

5 Prepare Loop assembly Level 1 reaction master mix (MM) according to Table , if four or less number of L0 parts are assembled into a pCk vector (otherwise see step 8)

Com pon ents	Volu me (μL)
Steri le wate r	3
10x T4 ligas e buff er (NE B)	1
1 mg/ mL bovi ne seru m albu min (NE B)	0.5
T4 DNA ligas e at 400 U/µL (NE B)	0.25
10 U/µL Bsal (NE B)	0.25

Final volu me	5

- Prepare plasmids mix by adding in a 0.2 mL tube: $1 \mu L$ of each L0 plasmid, $1 \mu L$ of the pCk vector (see step 4), and sterile water up to $5 \mu L$. Mix well.
 - When 4 L0 parts are assembled into a pCk plasmid, the volume of the plasmid mix is 5 μ L, and thus no volume of water is added.
- 7 Add 5 μ L of MM (step 5) to the 5 μ L of plasmids mix (step 6), to a final volume of 10 μ L. Mix well.
- If more than 4 L0 parts are to be assembled into a pCk vector, reduce the water volume in the MM by 1 μ L (step 5) for each extra 1 μ L of DNA part added in the plasmids mix (step 6).
- 9 Place samples in a thermocycler and use the following program: Assembly: 26 cycles of 37 °C for 3 min and 16 °C for 4 min. Termination and enzyme denaturation: 50 °C for 5 min and 80 °C for 10 min.
- Transform 20 μ L of chemically competent E. coli cells (transformation efficiency of 1 × 10^7 transformants/ μ g plasmid DNA) using 2 μ L of the Loop assembly reaction and then plate on LB agar plates containing 50 μ g/mL kanamycin and 40 μ g/mL of X-gal for bluewhite screening.
- 11 Incubate overnight at 37 °C.
- Colonies with white color are likely to contain an L1 insert cloned into the pCk vector (In the example in step 2: PROM5:CDS-3TERM)

 Blue color colonies will contain undigested pCk vector with LacZ
- Confirm the presence of the correct insert with Sanger sequencing using the primers pC_F (GCAACGCTCTGTCATCGTTAC) and pC_R (GTAACTTAGGACTTGTGCGACATGTC) for pCk vectors, and pC_F and pC_R2 (CAATCTGCTCTGATGCCGCATAGTTAAG) for pCkchlo vectors.