(3) LIBS Mapping of Mg/Ca ratios in marine mollusc shells V. 1
 DOI
 dx.doi.org/10.17504/protocols.io.y7dfzi6

Niklas Hausmann ${ }^{1}$, Amy Prendergast ${ }^{2}$, Andreas Lemonis ${ }^{3}$, Jana Zech ${ }^{4}$, Patrick Roberts ${ }^{4}$, Panagiotis Siozos ${ }^{4}$, Demetrios Anglos ${ }^{3}$
${ }^{1}$ Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser;
${ }^{2}$ University of Melbourne, School of Geography; ${ }^{3}$ University of Crete, Department of Chemistry;
${ }^{4}$ Max Planck Institute for the Science of Human History
Niklas Hausmann
University of York

DOI: dx.doi.org/10.17504/protocols.io.y7dfzi6

Protocol Citation: Niklas Hausmann, Amy Prendergast, Andreas Lemonis, Jana Zech, Patrick Roberts, Panagiotis Siozos, Demetrios Anglos 2019. LIBS Mapping of $\mathrm{Mg} / \mathrm{Ca}$ ratios in marine mollusc shells. protocols.io https://dx.doi.org/10.17504/protocols.io.y7dfzi6

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development
We are still developing and optimizing this protocol

Created: March 14, 2019
Last Modified: March 19, 2019
Protocol Integer ID: 21445

Abstract

Elemental analysis of biogeochemical archives is an established technique used to study climate in a range of applications, including ocean circulation, glacial/interglacial climates, and anthropogenic climate change. Data from mollusc archives are especially important because of their global abundance and sub-annual resolution. Despite this potential, they are underrepresented among palaeoclimate studies, due to enigmatic physiological influences skewing the elemental record. Understanding the patterns behind these influences will improve data interpretation and lead to the development of new climate proxies. Here, we show for the first time that extensive spatial mapping of multiple mollusc specimens using Laser Induced Breakdown Spectroscopy (LIBS) across a wider region can resolve enigmatic patterns within the elemental record caused by physiological influences. 2D elemental (Mg/Ca) maps of whole limpet shells (Patella caerulea) from across the Mediterranean revealed patterns of variability within individual mollusc records as well as within isochronous parts of specimens. By registering and quantifying these patterns, we established previously uninterpretable correlations with temperature ($R 2>0.8, p<0.01$). This outcome redefines the possibilities of accessing sub-annual climate proxies and presents the means to assess annual temperature ranges using oxygen isotope analysis requiring only 2 samples per shell.

Materials

STEP MATERIALS

\& Water
$\& 8$ Ethanol

Protocol materials

Sample preparation

1

Equipment

ISOMET 1000 Precision Saw

Saw
TYPE

Buehler BRAND
$11-2180$
Using a Buehler Diamond Wafering Blade (Series 15LC Diamond No. 11- SPECIFICATIONS 4276)

- Section shells at the hinge and along the direction of growth. If necessary remove non-hinge parts of the section to reduce the overall size.
- Select the 'better' side of the two sections and clean off with

8 Water

and
8 Ethanol

- Prepare a rudimentary holder ('Vesselheim') using crumpled up aluminium foil (and cradle the shell half into it, so that the section is facing up and is near-horizontal
- Place the sample into the centre of the xyz stage

Equipment

XYZ Stage

NAME

Translation stage TYPE
STANDA BRAND
(Standa 8MT200-100DCE) SKU

Laser specifications

2

Our LIBS system used a qswitched Nd:YAG laser operating at 1064 nm (infrared). Pulse duration was 10 ns and each pulse had an energy of $\sim 10 \mathrm{~mJ}$.

Equipment

new equipment	NAME
Q-switched Nd:YAG Laser	TYPE
Spectron Laser Systems	BRAND

n/a

Using an objective lens for infrared light, with a magnification of 10 , we focused the laser beam onto the surface of the shell, creating an in-situ plasma plume and sampling an area of $\sim 50 \mu \mathrm{~m}$.

Following irradiation, the plasma plume emitted light which we collected using a quartz fibre, which guides the light into a spectrograph using a $600 \mathrm{I} / \mathrm{nm}$ grating.

Equipment	NAME
LMH-10x	TYPE
objctive lens	BRAND
Thorlabs	SKU
LMH-10X-1064	LINK
https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4243\&pn=LMH-	
10X-1064	

The light exits the spectrograph onto the
sensor of an ICCD, which is

Equipment synchronized with the Qswitch of the laser and gated using a digital delay pulse generator (DG535, Andor Technology). We used a delay of 500 ns and a gating of 1000 ns .

Using a customised setup in LabView, we measured the peaks of the spectrum measured by the ICCD using the peak at 279.553 nm for MgII and 315.887 nm for Call. The resulting ratio was associated with the location of the xyz-stage and saved as a csv file.
n/a

Equipment

Czerny-Turner Spectrograph
NAME

TRIAX320 TYPE
Jobin Yvon BRAND
SKU

DH520-18F NAME
ICCD TYPE
Andor Technology BRAND
n/a SKU

Software

LabView

Data plotting

3

