

Oct 23, 2019

Contiviral transduction of iPSCs with sgRNAs and sgRNA libraries

DOI

dx.doi.org/10.17504/protocols.io.8dfhs3n

Lentiviral transduction of iPSCs with sgRNAs and sgRNA libraries

Ruilin Tian¹, Jason Hong¹, Sydney Sattler¹, Martin Kampmann¹

¹University of California, San Francisco

Neurodegeneration Met...

KampmannLab

Martin Kampmann

University of California, San Francisco

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.8dfhs3n

Protocol Citation: Ruilin Tian, Jason Hong, Sydney Sattler, Martin Kampmann 2019. Lentiviral transduction of iPSCs with sgRNAs and sgRNA libraries. **protocols.io** https://dx.doi.org/10.17504/protocols.io.8dfhs3n

Manuscript citation:

Tian et al (2019). CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons. Neuron pii: S0896-6273(19)30640-3. [Epub ahead of print] PubMed PMID: 31422865.

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: October 17, 2019

Last Modified: October 23, 2019

Protocol Integer ID: 28807

Keywords: Lentiviral transduction, Lentivirus, iPSC, sgRNA, lentiviral transduction, sgrna, ipsc

Attachments

Lentiviral transduct...

112KB

Materials

MATERIALS

- MEM, high glucose Thermo Fisher Scientific Catalog #11965092
- **⊠** Opti-MEM™ I Reduced Serum Medium **Thermo Fisher Scientific Catalog #**31985070
- TransIT®-Lenti Transfection Reagent Mirus Bio Catalog #MIR 6600
- X Lentivirus Precipitation Solution ALSTEM Cell Advancements Catalog #VC125

Equipment

12 ml Luer Lock Syringe

NAME

Syringe

NORM-JECT ®

4100.X00V0

 $https://www.air-tite-shop.com/p-15-norm-ject-luer-lock-syringe.aspx?variantid=41^{LINK} \\$

Equipment

Filter, 0.45 μm

Sterile Syringe Filter

Millex

SLHV033RB

http://www.merckmillipore.com/DE/de/product/Millex-HV-Syringe-Filter-Unit-0.45m-PVDF-33mm-gamma-sterilized,MM_NF-SLHV033RB

LIN K

Troubleshooting

Safety warnings

Please see SDS (Safety Data Sheet) for hazards and safety warnings.

Day 0: Seeding

- 18 24 hours before transfection, seed 293T cells into a 6 well plate or other format with a density that will make the cells **80 95** % confluent on the day of transfection. Refer to a seeding chart if necessary to seed appropriate density.
- 2 Incubate overnight.

Day 1: Transfection

- 3 Change 293T media with fresh DMEM.
- Warm *Trans*IT-Lenti Reagent to Room temperature.
- 5 Vortex gently before using.
- Gather Opti-Mem, DNA, and packaging mix and refer the table below for the recommended amount of reagents to add based on the format of 293Ts seeded.

Amounts refer to each well of a plate.

Note

Typically for individual sgRNAs, 2 wells of a 6 well plate per sgRNA will produce enough Lentivirus particles.

For sgRNA libraries (containing up to 50,000 elements), a 15 cm dish can be used. This can be scaled down for smaller libraries.

Culture vessel	48-well plate	24-well plate	12-well plate	6-well plate	10-cm dish	T75 flask	15-cm dish
Surface area	1.0 cm^2	1.9cm^2	3.8 cm^2	9.6 cm^2	59 cm^2	75 cm^2	145cm^ 2
Complete growth medium	263 μΙ	0.5 ml	1.0 ml	2.0 ml	10 ml	15 ml	30 ml
Opti-Mem serum-	26 µl	50 μΙ	100 μΙ	200 μΙ	1.0 ml	1.5 ml	3.0 ml

free medium							
Transfer DNA (1 µg/µl stock)	0.13 μΙ	0.25 μΙ	0.5 μΙ	1.0 μΙ	5 μΙ	7.5 μΙ	15 μΙ
Packaging DNA Premix (1 µg/µl stock)	0.13 μΙ	0.25 μΙ	0.5 μΙ	1.0 μΙ	5 μΙ	7.5 µl	15 μΙ
TransIT- Lenti Reagent	0.78 μΙ	1.5 μΙ	3 μΙ	6 μΙ	30 μΙ	45 μΙ	90 μΙ

7 Add Opti-MEM into a sterile tube.

8	In another tube, mix Packaging DI	NA Premix and DNA.
---	-----------------------------------	--------------------

X

9 Add the DNA mix to the Opti-MEM and mix gently.

Ĺ	J
3	3

10 Add *Trans*IT-Lenti Reagent to the mixture and mix gently.

1		п
٠,		r
- 4	/	
4		L

11 Incubate for 00:10:00 for transfection complexes to form.

1 1

12 Add all of the TransIT-Lenti:DNA complex mixture to the 293Ts dropwise and gently swirl to mix.

	1

Incubate for 2 days. If a fluorescent marker is included in your DNA, you can check if cells are making virus by checking fluorescence after 24 hours.

Day 3: Harvest

13

14 With a 12 ml syringe, take up the media/supernatant of the cells.

15 Put a 0.45 µm filter on the syringe and filter the supernatant into a fresh 15 ml conical tube.

Note

Change the filter if it becomes hard to push. Do not push too hard that bubbles are coming

- 16 Add 1:4 ratio of cold viral precipitation solution (e.g. 0.25 mL viral precipitation solution for 1 mL of viral supernatant).
- 17 Mix well by pipetting up and down 10x.
- 18 Incubate the viral supernatant at \$\mathbb{\ma but no more than 3 days.
- 19 Cool down the centrifuge to 4 °C.
- 20 Spin down viral supernatant for 6000:30:00 at 601500 x g .
- 21 The pellet will contain the virus. Resuspend the pellet with \perp 1 mL of your media of choice.
- 22 term (a few days).

Note

Flash freezing the virus particles in liquid nitrogen may increase the retention of their potency.

Transduction with virus

23 Seed iPSC cells so that they will reach **50** % confluency the next day.

Add virus to cells. The amount to add depends on how concentrated the virus is (adding $\frac{1}{2}$ or $\frac{1}{2}$ of the total produced virus to cells is generally sufficient, see below for typical infection amounts).

ST	D 1	\cap /	10	
JΙ	_ '	\cup_{Γ}	٩0	ᆫ

sgRNA library (15 cm dish) 2 steps

A library prepared from a 15 cm dish typically infects 10 million iPSCs in one matrigel-coated T175 flask using 50 % of the produced virus.

- 25 Check next day for fluorescence by microscopy and the next time they are passaged by flow cytometry to check transduction efficiency.
- For sgRNA constructs including puromycin resistance, add 0.8 ug/ml puromycin to select for cells with the sgRNA until they are at least **80** % confluent (typically within 2 passages).