

Apr 30, 2020

Version 2

C LC-MS/MS Label-Free Proteomic Data Acquisition V.2

DOI

dx.doi.org/10.17504/protocols.io.bfsjjncn

Danielle Gutierrez¹, Jamie Allen¹, Zach Jenkins¹, Jeff Spraggins¹

¹Vanderbilt University

VU Biomolecular Multim...

Human BioMolecular Atl...

Jamie Allen

Vanderbilt University

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.bfsjjncn

Protocol Citation: Danielle Gutierrez, Jamie Allen, Zach Jenkins, Jeff Spraggins 2020. LC-MS/MS Label-Free Proteomic Data Acquisition. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bfsjjncn

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: April 30, 2020

Last Modified: October 19, 2023

Protocol Integer ID: 36395

Keywords: free proteomic data acquisition description of setting, free proteomic data acquisition description, free proteomic

sample, free proteomic data, ms label, ms data from label, ms data, sample, m, label, data

Abstract

Description of settings used to acquire LC-MS/MS data from label-free proteomic samples.

Troubleshooting

- 1 Label-free proteomic samples were analyzed on a Thermo Scientific Orbitrap Fusion Tribrid mass spectrometer in line with a Thermo Scientific Easy-nLC 1000 UHPLC system.
- 2 Samples, 2 µL, were injected via the autosampler and loaded onto a fused silica pulledtip C₁₈ UHPLC column (100 μm i.d. x 350 mm length,) packed with Waters C18 BEH resin (1.7 µm particle size, 130 Å pore size), with 0.1% formic acid in water (mobile phase A).
- 3 Peptides were separated over a 127 minute two-step gradient with initial conditions set to 100% mobile phase A for 2 minutes before ramping to 20% mobile phase B, 0.1% formic acid in acetonitrile, over 100 minutes and then 32% mobile phase B over 20 minutes. The remainder of the gradient was spent washing at 95% mobile phase B and returning to initial conditions.
- 4 Eluted peptides were ionized via positive mode nanoelectrospray ionization (nESI) using a Nanospray Flex ion source (Thermo Fisher Scientific).
- 5 The mass spectrometer was operated using a top 17 data-dependent acquisition mode.
- 6 Fourier transform mass spectra (FTMS) were collected using 120,000 resolving power, an automated gain control (AGC) target of 1e⁶, and a maximum injection time of 100 ms over the mass range of 400-1600 m/z.
- 7 Precursor ions were filtered using monoisotopic precursor selection of peptide ions with charge states ranging from 2 to 6. Previously interrogated precursor ions were excluded using a 30 s dynamic window (± 10 ppm).
- 8 Precursor ions for tandem mass spectrometry (MS/MS) analysis were isolated using a 2 m/z quadrupole mass filter window and then fragmented in the ion-routing multipole via higher energy dissociation (HCD) using a normalized collision energy of 35%.
- 9 Ion trap fragmentation spectra were acquired using an AGC target of 10,000 and maximum injection time of 35 ms, and 120 m/z was set for the first scan mass to enable detection of the lysine residue fragmented ion.