

Feb 28, 2024

Version 2

C LC-MS/MS analysis of 5 steroids in plasma in a clinical study of Congenital Adrenal Hyperplasia V.2

dx.doi.org/10.17504/protocols.io.e6nvwdrmzlmk/v2

Catriona Kyle^{1,2}, George Just³, Scott G Denham³, Natalie ZM Homer^{1,3}

¹University of Edinburgh; ²NHS Lothian;

³Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh

Clinical Mass Spectrom...

Natalie ZM Homer

University of Edinburgh

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.e6nvwdrmzlmk/v2

Protocol Citation: Catriona Kyle, George Just, Scott G Denham, Natalie ZM Homer 2024. LC-MS/MS analysis of 5 steroids in plasma in a clinical study of Congenital Adrenal Hyperplasia. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.e6nvwdrmzlmk/v2Version created by Natalie ZM Homer

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: February 24, 2024

Last Modified: February 28, 2024

Protocol Integer ID: 95685

Keywords: steroid, steroid analysis, quantitative steroid measurement, LC-MS/MS, corticosterone, testosterone, supported liquid extraction, tandem mass spectrometry, steroid mass spectrometry, 17-hydroxyprogesterone, androstenedione, cortisol, congenital adrenal hyperplasia, androstenedione, corticosterone, cortisol, hydrocortisone, 17a-hydroxyprogesterone, adrenal steroidogenesi, gold standard analytical technique for steroid analysis2, adrenocorticotrophic hormone, adrenal hyperplasia, reliable methods for steroid analysis, excessive release of adrenocorticotrophic hormone, steroid analysis, clinical study of congenital adrenal hyperplasia congenital, mineralocorticoid aldosterone1, congenital adrenal hyperplasia congenital, excess adrenal androgen synthesis, many cases the mineralocorticoid aldosterone1, deficiency of the glucocorticoid cortisol, steroid analysis2, liquid chromatography tandem mass spectrometry, glucocorticoid cortisol, simultaneous analysis of multiple steroid, steroids in plasma, tandem mass spectrometry method, c

Funders Acknowledgements:

NHS Research Scotland Grant ID: EDCRF Chief Scientist Office

Grant ID: SCAF/17/02

Abstract

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders that affects adrenal steroidogenesis, resulting in deficiency of the glucocorticoid cortisol and in many cases the mineralocorticoid aldosterone¹. This resulting lack of glucocorticoid (and mineralocorticoid) activates the hypothalamic-pituitaryadrenal (HPA) axis causing excessive release of adrenocorticotrophic hormone (ACTH) and excess adrenal androgen synthesis.

Diagnosing and treating CAH requires reliable methods for steroid analysis. Tandem mass spectrometry methods coupled with chromatographic separation are considered the gold standard analytical technique for steroid analysis² with the added benefit of enabling simultaneous analysis of multiple steroids. There are a range of methods that have been developed to measure multiple steroids in CAH³. Here we have developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for application to a clinical study that specifically explores the administration of d8-corticosterone as an alternative to hydrocortisone for CAH treatment.

Plasma samples (200 µL) were enriched with isotopically labelled steroids, diluted with water (0.1% formic acid v/v) and extracted alongside a (0.0025 - 400 ng) calibration curve, by automated 96-well supported liquid extraction (SLE), using dichloromethane and isopropanol as an organic solvent, on a Biotage Extrahera automated sample handler. Extracted steroids were separated on a Shimadzu Nexera uHPLC with gradient elution on a Kinetex C18 column (150 \times 3 mm; 2.6 μ m) and a mobile phase of methanol and water (0.1% formic acid in water and methanol). The run time was 16 minutes, followed by mass spectral analysis on an AB Sciex 6500+ tandem quadrupole mass spectrometer operated in multiple reaction mode, positive ionisation. The method measures five steroids - hydrocortisone (cortisol) and d8-corticosterone - combined with markers of CAH - androgens and the intermediate 17α -hydroxyprogesterone, alongside the internal standards - in plasma. Validation demonstrated that this method is sensitive, specific, and reliable.

Attachments

Guidelines

Ensure all training is up-to-date for operating the necessary laboratory instrumentation and equipment.

Materials

Consumables Table

А	В	С	D
Item	Supplier	Part no.	Quantity
1.75 mL glass vials with lids	Scientific Laboratory Supplies Ltd	TUB1200	10
7 mL glass vials with lids	Scientific Laboratory Supplies Ltd	TUB1220	5
Isolute SLE+ 400 96 well plate	Biotage	820-0400- P01	1
96-well plate sealing film	VWR	391-1250	1
Adhesive Plate Seal	Waters	186006336	1
Kinetex C18 (150 × 3 mm; 2.6 um)	Phenomene x	00F-4462- Y0	1
Kinetex KrudKatcher, 0.5 um	Phenomene x	AFO-8497	1
Deep well 96 well collection plate	Biotage	121-5203	1
Deep well (2 mL) 96 well collection plate	Waters	186002482	1

Consumables for homogenisation of bone marrow and steroid extraction by supported liquid extraction (SLE)

Chemicals and Analytical Standards Table

А	В	С
Item	Supplier	Article no.
Water (HPLC grade)	Fisher Scientific	C-10449380-X
Acetonitrile (LC-MS grade)	VWR	83640.320
Methanol (LC-MS grade)	VWR	83638.320
Water (LC-MS grade)	VWR	83645.320

А	В	С
Isopropanol (HPLC grade)	VWR	20880.320
Dichloromethane (HPLC grade)	Fisher Scientific	C-23373320-X
Cortisol	Sigma- Aldrich/Cerilliant	(C-106) 1 mg/mL in methanol (certified)
Androstenedione	Steraloids	(A-075) 1 mg/mL in acetonitrile (certified)
Testosterone	Sigma- Aldrich/Cerilliant	(T-037) 1 mg/mL in acetonitrile (certified)
17a- hydroxyprogesterone	Sigma- Aldrich/Cerilliant	(P-069) 1 mg/mL in acetonitrile (certified)
D8-Corticosterone	Cambridge Isotope Laboratories/CK Isotopes	(DLM-7347) Supplied as powder
13C3-testosterone	Sigma- Aldrich/Cerilliant	(T-070) 100 ug/mL in acetonitrile (certified)
13C3-androstenedione	Sigma- Aldrich/Cerilliant	(A-084) 100 ug/mL in acetonitrile (certified)
d9-progesterone	Sigma- Aldrich/Cerilliant	P-070 100 ug/mL in acetonitrile
Formic acid (LC-MS grade)	Fisher Scientific	10596814

Chemicals and analytical standards

Solutions Required

- 0.1% formic acid (aq) (200 mL) Make up to 200 mL with Water (HPLC grade). Mix thoroughly.
- 98:2 Dichloromethane:Isopropanol (1 L) Add 20 mL Isopropanol (HPLC grade) to 980 mL Dichloromethane (HPLC grade). Mix thoroughly.
- Methanol (HPLC grade): for preparation of calibration standard/internal standard dilutions.
- Water (HPLC grade): for preparation of calibration standards.

■ 70:30 Water:Methanol (100 mL) - Add 30 mL methanol (LC-MS grade) to 70 mL water (LC-MS grade). Mix thoroughly.

Equipment Table

A	В	С
ltem	Model	Supplier
2 x Liquid Chromatography Pumps	LC30AD	Shimadzu
Autosampler	SIL-30ACMP	Shimadzu
Column oven , Nexera X2	CTO-20AC	Shimadzu
QTrap 6500+ mass spectrometer	5038125-J	AB Sciex
Gilson Repetman	Gilson Repetman	Gilson
Deepwell plate thermoshaker	TS-DW	Grant Scientific
Liquid handling robot	Extrahera	Biotage, Sweden
SPE Dry 96 dual evaporator	SPE Dry	Biotage, Sweden

Equipment required for homogenisation, extraction and steroid analysis

Troubleshooting

Safety warnings

Ensure risk assessments are up to date and that all local laboratory guidelines are followed for handling chemicals and biological samples

Ethics statement

All human studies were approved by the University of Edinburgh NHS Lothian ACCORD Ethical Review Board.

Before start

Ensure all consumables are in stock and all compounds and reagents are freshly prepared

Preparation of human plasma for extraction

1 Remove human plasma samples from the freezer and defrost on ice.

Preparation of calibration standard stock solutions

- 2 Prepare 1 mg/mL stock solution of d8-corticosterone (d8B) from powder then prepare separate 100 µg/mL stock solutions of each steroid - d8B, cortisol (F), 17ahydroxyprogesterone (170HP4), testosterone (T) and androstenedione (A4) in methanol.
- 2.1 Prepare a mixed stock of the 5 steroids - D8B, F, 170HP4, T, A4 - by using 100 µg/mL stock solutions. Do this by adding 50 µL x 100 µg/mL D8B, 50 µL x 100 µg/mL F, 50 µL x 100 μ g/mL 170HP4, 50 μ L x 100 μ g/mL T and 50 μ L x 100 μ g/mL A4 + 750 μ L methanol to give a 5 µg/mL stock.
- 2.2 Dilute the **5 μg/mL stock** Mixed STOCK by 1:10 dilution (100 μL x 5 μg/mL + 900 μL methanol) to give 500 ng/mL stock
- 2.3 Dilute the 500 ng/mL mixed STOCK by 1:10 dilution (100 µL x 500 ng/mL + 900 µL methanol) to give 50 ng/mL stock
- 2.4 Dilute the **50 ng/mL** mixed STOCK by 1:10 dilution (100 μ L x 5 μ g/mL + 900 μ L methanol) to give 5 ng/mL stock
- 2.5 Dilute the **5 ng/mL** Mixed STOCK by 1:10 dilution (100 μL x 5 μg/mL + 900 μL methanol) to give **500 pg/mL stock**
- 2.6 Dilute the **500 pg/mL** Mixed STOCK by 1:10 dilution (Δ 100 μL x 5 μg/mL + Δ 900 μL methanol) to give **50 pg/mL stock** ≡ go to step #3

Preparation of internal standard solution

- 3 Prepare 100 µg/mL solutions of each isotopically labelled internal standard (d4-cortisol, ¹³C₃-testosterone, ¹³C₃-androstenedione and d9-progesterone) in methanol.
- 3.1 Prepare a mixed 5 µg/mL Internal Standard mix stock solution of the three isotopically labelled steroids by adding Δ 25 μL x 100 μg/mL d4-cortisol, Δ 25 μL x 100 μg/mL

 $^{13}\text{C}_3$ -testosterone and $\stackrel{\blacksquare}{_}$ 25 μL x 100 $\mu\text{g/mL}^{13}\text{C}_3$ -androstenedione and $\stackrel{\blacksquare}{_}$ 25 μL x 100 μ g/mL d9-progesterone to 425μ L methanol.

3.2 Prepare a 5 ng/mL Working Internal Standard solution by taking 10 μL x 5 μg/mL Int Std $Mix + 1990 \mu L methanol.$

Set up of supported liquid extraction of steroids from calibration standards and samples

4 Label a 2 mL deep well 96-well collection plate (Biotage). Label a Supported Liquid Extraction SLE400 plate with batch details. Label a 2 mL deep well 96-well collection plate (Waters).

Design and prepare batch of standards and samples in Microsoft Excel template (see Files), following a column-wise plate map design as below (Table S1).

	1	2	3	4	5	6	7	8	9	10	11	12
A	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
8.51	Double Blank	0.250 STD	100.0 STD	Plasma 4	Plasma 12	Plasma 20	Plasma 28	Plasma 36	Plasma 44	Plasma 52	Plasma 60	Plasma 68
В	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
	0 STD	0.500 STD	200.0 STD	Plasma 5	Plasma 13	Plasma 21	Plasma 29	Plasma 37	Plasma 45	Plasma 53	Plasma 61	Plasma 69
С	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
	0.0025 STD	1.0 STD	400.0 STD	Plasma 6	Plasma 14	Plasma 22	Plasma 30	Plasma 38	Plasma 46	Plasma 54	Plasma 62	Plasma 70
D	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
	0.0050 STD	2.5 STD	Double Blank	Plasma 7	Plasma 15	Plasma 23	Plasma 31	Plasma 39	Plasma 47	Plasma 55	Plasma 63	Plasma 71
E	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
	0.010 STD	5.0 STD	QC F3	Plasma 8	Plasma 16	Plasma 24	Plasma 32	Plasma 40	Plasma 48	Plasma 56 F10	Plasma 64	Plasma 72
F	0.025 STD	10.0 STD	Plasma 1	Plasma 9	Plasma 17		Plasma 33		Plasma 49	Plasma 57	Plasma 65	Plasma 73
G	G1	G2	G3	G4	G5	Plasma 25 G6	G7	G8	G9	G10	G11	G12
G	0.050 STD	25.0 STD	Plasma 2	Plasma 10	Plasma 18		Plasma 34	Plasma 42	Plasma 50	Plasma 58	Plasma 66	QC
н	H1	H2	Н3	H4	Н5	H6	H7	H8	Н9	H10	H11	H12 Solvent
	0.100 STD	50.0 STD	Plasma 3	Plasma 11	Plasma 19	Plasma 27	Plasma 35	Plasma 43	Plasma 51	Plasma 59	Plasma 67	blank

Table S1 - Plate Map - Column-wise plate layout for automated Supported Liquid Extraction on an Extrahera liquid handling robot (Biotage, Sweden)

Preparation of calibration standard curve and samples

5 Prepare calibration standards directly into the **96-well deep well plate** using Table S2 below, for volumes of each stock concentration, into a final volume of Δ 200 μL water.

А	В	С	D	
Standard name	Amount (ng)	STD Mix Vol (uL)	Vol water (uL)	
0 STD	0	0	200	
0.00250 STD	0.00250	5 uL x 500 pg/mL	195	
0.00500 STD	0.00500	10 uL x 500 pg/mL	190	
0.01000 STD	0.0100	20 uL x 500 pg/mL	180	
0.0250 STD	0.0250	5 uL x 5 ng/mL	195	
0.0500 STD	0.0500	10 uL x 5 ng/mL	190	
0.100 STD	0.100	20 uL x 5 ng/mL	180	
0.250 STD	0.250	5 uL x 50 ng/mL	195	
0.500 STD	0.500	10 uL x 50 ng/mL	190	
1.00 STD	1.00	20 uL x 50 ng/mL	180	
2.50 STD	2.50	5 uL x 500 ng/mL	195	
5.00 STD	5.00	10 uL x 500 ng/mL	190	
10.0 STD	10.0	20 uL x 500 ng/mL	180	
25.0 STD	25.0	5 uL x 5 ug/mL	195	
50.0 STD	50.0	10 uL x 5 ug/mL	190	
100 STD	100.0	20 uL x 5 ug/mL	180	
200 STD	250	5 uL x 50 ug/mL	195	
400 STD	400.0	8 uL x 50 ug/mL	192	

Table S2 - Calibration standard preparation table

5.1 Aliquot 🚨 200 uL plasma sample into the correct well according to the plate map design.

Supported liquid extraction of steroids from calibration standards and samples (10m)

- 6 Using a multi-step pipette enrich the plate containing calibration standards with WIS by adding 🚨 20 μL **x 5 ng/mL Working Internal Standard** into each calibration standard, including 0 std and each sample (human plasma), except for the double blank and solvent blank.
- 7 Using the Extrahera liquid handling robot, set up with the batch labelled SLE400 extraction plate and the deep well extraction plate, containing the calibration standards and samples. Programme Extrahera to aliquot \perp 200 μ L \mid 0.1% formic acid in water (v/v) into each well of the 96-well deep well plate containing the samples and standards.
- 8 Programme the Extrahera to transfer 400μ of liquid from each well (containing sample and the diluent, into a 400 µL volume Supported Liquid Extraction plate (SLE400), pre-placed into the deck on the Extrahera, with a deep well Waters 2 mL deep well collection plate below, pre-labelled with the batch details and date of extraction.
- 9 Allow the diluted sample to adsorb onto the SLE extraction bed for 00:05:00 before eluting with 4 600 µL x 98:2 (v/v) dichloromethane/isopropanol and repeating twice more, each time collecting the eluent into the collection plate
- 10 Dry down the eluent collected into the 2 mL collection plate using the SPE Dry down for 96-well plates under nitrogen.
- 11 Resuspend in 4 100 µL x 70:30 water/methanol, seal the plate with a zone-free plate seal and shake on ThermoShaker for 600:05:00 at 600 300 rpm
- 12 Place the plate in the autosampler for LC-MS/MS or store at \$\insertails -20 \circ \text{until ready for}\$ analysis.

Steroid analysis by LC-MS/MS

16m

5m

5m

- Set up an acquisition batch in Analyst software using the electronic excel file of the calibration standards and sample list. Set to inject $\[\] 10 \ \mu L \]$ per sample and use a method of chromatographic separation as described in step 16 and 17 and mass spectrometer settings as outlined in steps 18 and 19.
- Set up the Shimadzu Nexera X2 liquid chromatography system and fit with a Phenomenex Krud Katcher and a Phenomenex 150 × 3 mm; 2.6 μm Kinetex C18 liquid chromatography column, using mobile phase A water with 0.1% formic acid and mobile phase B methanol with 0.1% formic acid at 0.5 mL/min and 40 °C diverting to the mass spectrometer at 0.2 mins and
- Set up chromatographic gradient as below (Table S3) with a run time of 00:16:00 per sample

А	В	С	D
Time (min)	Flow (mL/min)	A (%)	В (%)
Initial	0.5	45	55
4.00	0.5	45	55
10.00	0.5	0	100
12.00	0.5	0	100
12.10	0.5	45	55
16.00	0.5	45	55

Table S3 - Chromatographic gradient details. A - water w/ 0.1% formic acid; B - methanol w/ 0.1% formic acid. 40oC. Kinetex C18 (150 x 3 mm; 2.6 µm)

Set up the mass spectrometer for Multiple Reaction Monitoring (MRM) method in positive mode, with electrospray ionisation as below (Table S4), with divert of LC flow into the mass spectrometer set at 1 minute and 12 minutes.

16m

A	В
Instrument	Sciex QTrap 6500+
Source, Ionisation Mode	IonDrive Turbo V Source, ESI
Scan Mode, Polarity	MRM, Positive
Resolution (Q1/Q3)	unit/unit
Mass range	Low mass
Pause Time	5.007 ms
Acquisition time	16.0 min
Delay time	0 sec
Curtain Gas (CUR) (N2)	30 units
Collision Gas (CAD) (N2)	Medium
IonSpray Voltage (IS) (Positive)	5500 V
Temperature (TEM)	600 °C
Ion Source Gas 1 (GS1) (Air)	40 units
Ion Source Gas 2 (GS2) (Air)	60 units
Entrance Potential (EP) (Positive)	10 V
Probe position (x – axis)	5
Probe position (y – axis)	2

Table S4 - Mass Spectrometry source settings for positive ion electrospray ionsiation on QTrap 6500+ mass spectrometer $\,$

17 Set up the mass spectrometer to monitor for the following multiple reaction monitoring (MRM) transitions for each steroid and each isotopically labelled steroid (Table S5).

Α	В	С	D	E	F	G
Q1 Mass (Da)	Q3 Mas s (Da)	Scan time (msec)	Steroid Name	DP (V)	CE (V)	CX P (V)
287.1	97.0	10	Androstenedione 1	61	27	14
287.1	78.9	10	Androstenedione 2	61	67	10
363.1	121.2	10	Cortisol 1	66	31	12
363.1	91.0	10	Cortisol 2	76	83	10
289.1	97.0	10	Testosterone 1	101	29	12
289.1	109. 2	10	Testosterone 2	101	31	6
333.1	109.1	10	17a-hydroxyprogesterone 1	66	31	12
333.1	96.9	10	17a-hydroxyprogesterone 2	66	29	12
355.3	128.1	10	d8B-Corticosterone 1	37	45	14
355.3	125. 0	10	d8B-Corticosterone 2	29	56	14
292.1	100. 0	10	13C3-Testosterone	96	29	12
290.2	100.1	10	13C3-Androstenedione	31	27	12
324.1	100. 0	10	d9-progesterone	151	31	15

	Α	В	С	D	E	F	G
	367.2	121.1	10	d4-cortisol	80	29	16

Table S5 - Multiple reaction monitoring (MRM) settings for each steroid, including quantitative (1) and qualitative (2) ions for each steroid. DP - declustering potential, CE collision energy, CXP - collision exit potential

18 Check the retention times of the steroids are as expected, as shown in the chromatogram in Fig S1:

Expected result

Retention times; cortisol at 4.0 mins, d8-corticosterone at 6.1 mins, androstenedione at **7.3 mins**, testosterone at **7.8 mins** and 17a-hydroxyprogesterone at **8.1 mins**

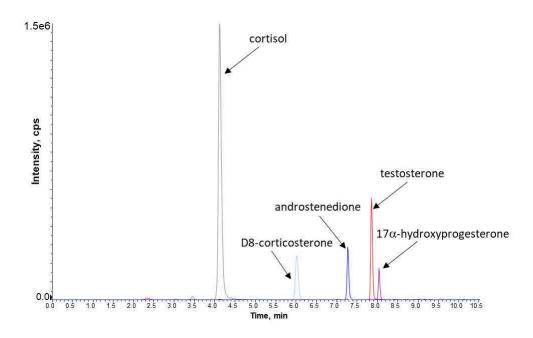
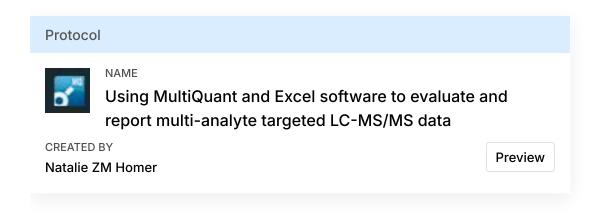


Figure S1 - Overlaid Ion Chromatogram of MRM transitions for cortisol, D8corticosterone, androstenedione, testosterone and 17a-hydroxyprogesterone, separated by gradient on a Kinetex C18 (150 x 3 mm; 2.6 um) at 0.5 mL/min with mobile phase 0.1% formic acid in water and methanol

19 Inject a mid-level standard. Check the chromatography and each steroid retention time is consistent with expected times and peak area response is as expected. Once satisfied

then set the batch of samples to analyse, injecting $\perp \!\!\! \perp 10 \, \mu \!\!\! \perp 10 \, \mu$ per sample.

Method specific data evaluation of LC-MS/MS data


20 Use the data analysis parameters to assess the peak area of the chromatograms for the Steroid analytes and their nominated internal standards (Table S6)

Α	В	С	D
Steroid Name	Abbreviatio n	Retention Time (min)	Internal Standar d
Cortisol	F	4.0	d4F
d8-Corticosterone	d8B	6.1	d4F
Androstenedione	A4	7.3	13C3A4
Testosterone	estosterone T		13C3T
17a-hydroxyprogesterone	170HP	8.1	d9P4
Internal Standards			
d4-cortisol	d4F	3.9	Int Std
13C3-Androstenedione	13C3A4	7.3	Int Std
13C3-Testosterone	13C3T	7.8	Int Std
d9-progesterone	d9P4	9.0	Int Std

Table S6 - Method specific parameters of retention time and specific internal standard of the steroids

21 Use MultiQuant software and Microsoft Excel to evaluate the LC-MS/MS data, by defining calibration standard levels, ensuring accuracy of the calibration standards and linear regression > 0.99. Use the Table above, to calculate the concentration of steroids in each sample, as detailed in the protocol below. Remember to account for the volume of sample extracted and express as ng/mL.

Protocol references

- 1 Claahsen-van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Fluck CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenstrom A, Reisch N, Sandberg DE, Stikkelbroeck N, Touraine P, Utari A, Wudy SA & White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. *Endocr Rev* 2022 **43** 91-159.
- 2 Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. *J Clin Endocrinol Metab.* 2013 Oct;**98**(10):3971-3
- 3 Rakete S, Schubert T, Vogeser M. Semi-automated serum steroid profiling with tandem mass spectrometry. *J Mass Spectrom Adv Clin Lab.* 2022 **27** 40-48.