

Dec 13, 2024

JAX-Sen: Nuclei prep from frozen kidney tissue for single-nuclei RNA-seq

DOI

dx.doi.org/10.17504/protocols.io.8epv52r46v1b/v1

Sandra L Daigle¹, Greggory A Perry¹, William F Flynn¹, Elise T Courtois¹

¹The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA

Cellular Senescence Net...

Harshpreet Chandok

The Jackson Laboratory

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.8epv52r46v1b/v1

Protocol Citation: Sandra L Daigle, Greggory A Perry, William F Flynn, Elise T Courtois 2024. JAX-Sen: Nuclei prep from frozen kidney tissue for single-nuclei RNA-seq. **protocols.io** https://dx.doi.org/10.17504/protocols.io.8epv52r46v1b/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: December 13, 2024

Last Modified: December 13, 2024

Protocol Integer ID: 115129

Keywords: JAX-Sen, nuclei prep from frozen kidney tissue, nuclei rna, rna, frozen kidney tissue, nuclei, senescence, tissue,

kidney

Funders Acknowledgements:

National Institute on Aging (NIA) JAX-Sen Senescence Tissue Mapping Center Grant

Grant ID: U54 AG079753

Abstract

We aim to study and characterize senescence in the C57BL/6J mouse kidney. This protocol describes the nuclei prep from frozen kidney tissue for single-nuclei RNA-seq.

Troubleshooting

Abstract

We aim to study and characterize senescence in the C57BL/6J mouse kidney. This protocol describes the nuclei prep from frozen kidney tissue for single-nuclei RNA-seq.

Reagents and Materials

2 Nuclei Isolation:

- Nuclei Extraction Buffer: 130-128-024 (Miltenyi)
- C Tubes: 130-093-237 (Miltenyi)
- MACS BSA Stock Solution: 130-091-376 (Miltenyi)
- DPBS: 14190144 (Thermo Fisher Scientific)
- ROCHE Protector RNase Inhibitor: 3335399001 (Millipore)
- EppendorfTM DNA LoBind1.5 mL Microcentrifuge Tubes: 13-698-791 (Thomas Scientific)
- Lobind Eppendorf 2.0mL tubes: 13-698-792 (Thermo Fisher Scientific)
- Eppendorf 5.0mL tubes: 4011-9487 (USA Scientific)
- Eppendorf 15.0mL tubes: 4011-2208 (USA Scientific)
- BOApluriStrainer Mini 70 μm: 43-10070-50 (pluriSelect)
- BOApluriStrainer Mini 40 μm: 43-10040-50 (pluriSelect)
- Anti-Nucleus Microbeads: 130-132-997 (Miltenyi)
- LS Columns: 130-042-401 (Miltenyi)
- QuadroMACS Separator: 130-090-976 (Miltenyi)
- MultiStand: 130-042-303 (Miltenyi)

Cell Counting: LUNA FX7

- Acridine, Orange/Propidium Iodide Stain: F23001(New England BioGroup, LLC)
- Luna Slides:
- Ultra-low Fluorescent Slides: Fluorescent and Brightfield Mode (New England BioGroup, LLC)

Procedure

Before Starting

- 3.1 Pre-cool centrifuge, buffers, and consumables with sample contact (C Tube, tubes and Strainers, etc.) at 4 °C.
- 3.2 Prepare Buffers

3.3 1 kidney tissue ~140-240mg in weight. Keep on dry ice until ready to do the prep

3.4

Miltenyi Nucclei Extraction Buffer	r (Stock S	olution)					
Item	Stock	Final	1X	2X	4X	6X	8X
Miltenyi Nuclei Extraction Buffer-mL	n/a	n/a	4.0	8.0	16.0	24.0	32.0
RNAse Inhibitor-μL	40U/μL	.2U/μL	20	40	80	120	160
Total			4mL	8mL	16mL	24mL	32mL
Nuclei Separation Buffer (NSB)							
Item	Stock	Final	1X	2X	4X	6X	8X
Miltenyi Nuclei Extraction Buffer- mL	n/a	14%	1.1	2.2	4.5	6.7	9.0
PBS pH 7.2-mL	1X	-	6.8	13.7	27.2	40.9	54.4
BSA-μL	10%	0.04%	32	64	128	192	256
RNAse Inhibitor-μL	40U/μL	.2U/μL	40	80	160	240	320
Total			8mL	16mL	32mL	48mL	64mL
For RINSING the column-No RNAse Inhibitor added							
Item	Stock	Final	1X	2X	4X	6X	8X
Miltenyi Nuclei Extraction Buffer- mL	n/a	14%	0.420	0.840	1.7	2.5	3.4
PBS pH 7.2-mL	1X	-	2.6	5.1	10.3	15.4	20.5
BSA-μL	10%	0.04%	12	24	48	72	96
Total			3mL	6mL	12mL	18mL	24mL
Resuspension Buffer (NRB)-for final resuspension							
Item	Stock	Final	1X	2X	4X	6X	8X
PBS pH 7.2-μL	1X	-	116	233	465	698	930
BSA-μL	10%	2%	30	60	120	180	240
RNAse Inhibitor-μL	40U/μL	1U/μL	4	8	15	23	30
Total			.150mL	.300mL	.600mL	.900mL	1.2mL

4 Miltenyi gentleMACS Procedure for Tissue Lysis and nuclei extraction

- 4.1 Add 2.0mL ice-cold Nuclei Extraction Buffer to each pre-cooled gentleMACS C Tubes on ice.
- 4.2 Transfer frozen tissue piece(s) into the gentleMACS C Tube containing lysis buffer and directly proceed with the following steps until samples are dissociated.

Note: Do not let frozen samples thaw before dissociation, as endogenous RNase might degrade RNA.

- 4.3 Close gentleMACS C Tube and place it on the gentleMACS Dissociator. Be sure the cap is closed completely.
- 4.4 Run the following gentleMACS Programs: (GentleMACs instrument either in 4⁰C cooler or use cooling sleeves that are previously frozen at -20⁰C.) Total lysis time is 28 minutes
 - -gentleMACS 4C_nuclei_1-5min
 - -Cus_4C_nuclei_10 program-15min
 - -5_Min_Mix-spin only
 - -3 min. on ice
- 4.5 A quick spin in a swinging bucket at $500 \times g$, 4° C for 10-15 sec may be necessary.
- 4.6 Pipette mix with wide bore tip and filter through pre-wet 70µm filter into a cold 5mL tube.
 - -Pre-wet filter with Nuclei Extractio Buffer.
 - -Add additional 2mL NEB to rinse the filter.
- 4.7 Spin down nuclei in swinging bucket at 500 x g, 4°C for 5 minutes
- 4.8 Remove supernatant and resuspend nuclei in 450µL Separation Buffer
- 4.9 Pass nuclei through 40μm strainer
 Count nuclei using AOPI-Dilute nuclei 5 times (10μL nuclei + 40μL SB)
- 5 Miltenyi Anti-Nucleus Microbead Cleanup
- 5.1 Notes:
- A. Keep cold and degas buffer before use, do not want bubbles in column.
- B. Scale up Nuclei Separation Buffer if working with higher nucleus numbers.
- C. Maximum nuclei per separation 2×10^7 .
- D. Use Refrigerator for labeling incubation.
- E. Magnetic Labelling-Anti-Nucleus microbeads use 5mL or 15mL tubes.
- F. Always wait until the column reservoir is empty before proceeding to the next step
- 5.2 Distribute 1M nuclei for each clean up into 5mL tube and add additional Separation Buffer so the total volume equals 450μ L.

- 5.3 Add 50µl microbeads to nuclei, mix well and incubate 15 min in the refrigerator (2-8⁰C) (not on ice)
- 5.4 Place column in the magnetic field of a suitable MACS Separator and prepare column by rinsing with 3 mL of nuclei separation buffer without RNase Inhibitor when 2-3 of the 15minute incubation remains.
- 5.5 After the 15-minute incubation add an additional 2 mL nuclei separation buffer, mix well, and proceed to magnetic separation.
- 5.6 Apply nuclei suspension directly to the center of the column. Collect flowthrough containing debris in a 15mL tube.
- 5.7 Wash column 2-3 times with 1 mL of nuclei separation buffer. Add buffer as soon as the column is empty and rinse the inner column walls.
- 5.8 Remove column from the magnet and place it in a rack with a suitable collection tube depending on rack, 5mL tube is ideal.
- 5.9 Elute the Microbeads off the column by pipetting 2mL of Nuclei Separation Buffer onto the column, capture flowthrough in collection tube.
- 5.10 Immediately flush out the magnetically labeled nuclei by firmly pushing the plunger into the column.
- 5.11 Centrifuge 500xg for 5 minutes. Pipette off supernatant leaving ~20µL behind.
- 5.12 Add ~120 µL Nuclei Suspension Buffer (from Nuclei isolation) 1XPBS,2%BSA,1U/µL RNase Inhibitor Optional-40µm strainer if cells are clumpy. QC/Count Nuclei using AOPI.