

Sep 07, 2022

Integra Magbead DNA and RNA Extraction for isolated colonies

DOI

dx.doi.org/10.17504/protocols.io.dm6gpjeqjgzp/v1

Sophana Chea¹, Sreyngim Lay¹, Mengheng Oum¹, Gechlang Tang¹, Cheata Hou¹, Manu Vanaerschot², Christina Yek³, Cristina Tato², Jessica Manning³, Vida Ahyong²

¹International Center of Excellence in Research, National Institute of Health, Cambodia; ²Chan Zuckerberg Biohub; ³National Institute of Health

Sophana Chea

International Center of Excellence in Research, National Ins...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.dm6gpjeqjgzp/v1

Protocol Citation: Sophana Chea, Sreyngim Lay, Mengheng Oum, Gechlang Tang, Cheata Hou, Manu Vanaerschot, Christina Yek, Cristina Tato, Jessica Manning, Vida Ahyong 2022. Integra Magbead DNA and RNA Extraction for isolated colonies. **protocols.io** https://dx.doi.org/10.17504/protocols.io.dm6gpjeqigzp/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: September 02, 2022

Last Modified: September 07, 2022

Protocol Integer ID: 69485

Keywords: Integra, DNA, RNA, Colony, isolated, Extraction, integra magbead dna, rna extraction for isolated colony, rna extraction, rna from isolated colony, isolated colony, quality dna, rna, extraction, generation sequencing, ng, dna

Abstract

This protocol is the process to extract DNA and RNA from isolated colonies. The extracted high-quality DNA or RNA are suitable for Next-Generation Sequencing (NGS).

Guidelines

Adapted from the ZymoBIOMICS MagBead DNA/RNA Kit Manual (Zymo Research, Cat#R2135).

Materials

- 1. RNase away spray for RNase decontaminants.
- RNase AWAY™ Surface Decontaminant Thermo Fisher Scientific Catalog #7002PK
- 2. X ZymoBIOMIC MagBead DNA/RNA Zymo Research Catalog #R2135
- 3. X 100% Molecular grade ethanol
- 4. Molecular Grade Isopropanol
- 5. Proteinase K w/ Storage buffer 20mg set **Zymo Research Catalog #**D3001-2-20
- 6. X DNase I Set Zymo Research Catalog #E1010
- 7. X Nuclease-free water Ambion Catalog #AM9932
- 8. 1ml deep well sterile plate.
- 9. 2ml deep well sterile plate.
- 10. Hard-shell PCR Plates 96 V-well (Bio-Rad, Cat# HSP9601).
- 11. PCR Plate Seal, foil (Bio-Rad, Cat# MSF1001).
- 12. 96S Super Magnet. (ALPAQUA, Cat# A001322)

Equipment	
VIAFLO	NAME
96 channel pipette	TYPE
Integra	BRAND
VIAFLO 96	SKU
https://www.integra-biosciences.com/united-kingdom/en/electronic-pipettes/viaflo-96-viaflo-384#tech-info	LIN K

Troubleshooting

Safety warnings

All steps should be performed at \$\ \mathbb{S}\$ Room temperature \$\ \cdot\$.

Perform the extraction in the extraction room separate from the PCR room.

Respect the Laboratory safety guideline for all steps of the protocol.

Wearing PPE is recommended.

Note

** When reusing tips, make sure to include a bit of extra air aspiration to avoid drops at the bottom of tips when aspirating volumes, and also a bit of extra air blows out at the end of dispensing steps in plates.

Buffer Preparation

30m

1. Add 4 20 mL isopropanol to the MagBead DNA/RNA Wash 1 concentrate.

30m

- 2. Add 🛴 30 mL isopropanol to the MagBead DNA/RNA Wash 2 concentrate.
- 3. Reconstitute lyophilized Proteinase K at M 20 mg/mL with Proteinase K Storage Buffer and mix by vortexing. Use immediately or store at 4 -20 °C .
- 4. Reconstitute each vial of lyophilized DNase I with 2.25 mL DNase/RNase-Free water in a conical tube.

Note

Make buffer plates prior to starting protocol

1h

2 1. Pre-make Lysis Buffer plate with Δ 520 μ L DNA/RNA Lysis buffer in 1ml deep well plate.

1h

Note

For the Beads plate, make it immediately before starting, <1h prior to starting the protocol, to ensure the beads are kept in suspension.

- 3. Pre-make DNA/RNA Wash 1 plate with Δ 520 μ L MagBead DNA/RNA Wash 1 into 1ml deep well plate. Make it two plates.
- 4. Pre-make DNA/RNA Wash 2 plate with Δ 520 μ L MagBead DNA/RNA Wash 2 into 1ml deep well plate. Make it two plates.

- 5. Pre-make 100% Ethanol plate with \perp 1100 μ L of 100% Ethanol into a 2ml deep well plate. Make it three plates.

- 8. Spin all plates down for 00:01:00 except for the bead plate. Perform a quick pulse spin down of the bead plate, just enough to get all the liquid down. Centrifuge the rest of the plate at 12 000 rpm for 00:01:00 .

Sample preparation and Proteinase K

3 1. Create a plate map so you know which sample you are adding to each well. Add Δ 50 μ L of isolated colonies samples to plate 1 (leave column 12 for water control).

31m

- 2. Top up the 1x DNA/RNA Shield to get $\frac{1}{4}$ 750 μ L.
- 3. Manually add \perp 120 μ L of Proteinase K into the 0.2ml 8-strip well.
- 4. Use multichannel pipet to add \perp 10 μ L of Proteinase K into each sample and mix (plate 1).
- 5. Load a set of Integra tips (tip set 1) onto the Integra.
- at Room temperature for 00:30:00 . Keep tips.

Sample binding and washing

- 7. **Program: Pipet 250ul.** Add \triangle 500 μ L total of Lysis Buffer to the sample plate (plate 1).
- 35m
- 8. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix samples and buffer for 00:02:00 . Keep tips.
- 9. Aliquot \triangle 35 μ L of MagBinding Beads into 96 V-well PCR plate.
- 10. **Program: Pipet/Mix 20ul, 10 cycles, 2 times, speed 4.** Program the Integra to mix the MagBinding Beads plate, so the beads are fully resuspended.
- 11. **Program: Pipet 30ul.** Add \triangleq 30 μ L of MagBinding Beads into the sample plate (plate 1).

- 12. **Program: Pipet/Mix 250ul, 30 cycles, speed 3.** Program the Integra to mix the sample and MagBinding Beads plate, so the beads are fully resuspended. Continue this Integra Program to mix the sample and MagBinding Beads for 00:20:00.
- 13. Transfer the plate/tube to the magnetic stand for 00:05:00 until beads (DNA) have pelleted, transfer the cleared supernatant (RNA) into a new 96 V-well plate.

DNA Purification (Beads)

45m

5 14. Change new Integra tips.

45m

- 15. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of $\Delta 500 \,\mu$ MagBead DNA/RNA Wash 1 into sample plate and mix well.
- 16. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix the Wash 1 buffer with the beads. Keep tips.
- 17. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 18. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 19. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of Δ 500 μ L MagBead DNA/RNA Wash 2 into sample plate and mix well.
- 20. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix the Wash 2 buffer with the beads. Keep tips.
- 21. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 22. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 23. Change new Integra tips.
- 24. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of Ethanol into sample plate and mix well. $4500 \, \mu L$
- 25. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix 100% Ethanol with the beads. Keep tips.
- 26. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 27. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 28. Repeat step 24.
- 29. Dry the beads for 00:10:00 on the magnetic stand.
- 30. Change new Integra tips.

- 31. **Program: Pipet 30ul, speed 5.** Dispense a total of $\underline{\underline{A}}$ 30 $\mu \underline{L}$ nuclease-free water into the sample plate.
- 32. **Program: Pipet/Mix 20ul, 30 cycles, speed 7.** Program the Integra to mix nuclease-free water with the beads. Keep tips.
- 33. **Program: Manual Pipet 30ul, speed 3.** Transfer the plate to the magnetic stand and pellet the beads for 00:05:00, then aspirate and dispense the eluted DNA to a new 96 V-well plate.
- 34. Store DNA sample immediately at 4 -80 °C .

RNA Purification (Supernatant)

45m

6 35. Change the new Integra tip.

- 45m
- 36. **Program: Pipet 230ul, 3 times, speed 7.** Dispense a total of $400 \, \mu L$ 100% Ethanol to the supernatant.
- 37. **Program: Pipet/Mix 250ul, 30 cycles, speed 7.** Program the Integra to mix 100% Ethanol with the supernatant. Keep tips.
- 38. Aliquot \perp 35 μ L of MagBinding Beads into 96 V-well PCR plate.
- 39. **Program: Pipet/Mix 20ul, 10 cycles, 2 times, speed 4.** Program the Integra to mix the MagBinding Beads plate, so the beads are fully resuspended.
- 40. **Program: Pipet 30ul.** Add \perp 30 μ L of MagBinding beads into the sample plate.
- 41. **Program: Pipet/Mix 250ul, 10 cycles, speed 3.** Program the Integra to mix the sample and MagBinding beads plate, so the beads are fully resuspended. Continue this Integra Program to mix the sample and MagBinding Beads for 00:10:00.
- 42. Transfer the plate to the magnetic stand for 00:05:00 until beads have pelleted, then discard the cleared supernatant.
- 43. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of $\Delta 500 \, \mu L$ MagBead DNA/RNA Wash 1 into sample plate.
- 44. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix the Wash 1 buffer with the beads. Keep tips.
- 45. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 46. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 47. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of $\Delta 500 \, \mu$ MagBead DNA/RNA Wash 2 into sample plate.

- 48. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix the Wash 2 buffer with the beads. Keep tips.
- 49. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 50. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 51. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of Ethanol into the sample plate. 100%
- 52. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix 100% Ethanol with the beads. Keep tips.
- 53. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 54. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 55. Repeat step 51.
- 57. **Program: Pipet 250ul, 2 times, speed 7.** Dispense a total of Δ 500 μ L DNA/RNA Prep Buffer into sample plate.
- 58. **Program: Pipet/Mix 250ul, 30 cycles, speed 10.** Program the Integra to mix the DNA/RNA Prep Buffer with the beads. Keep tips.
- 59. Place the 96-well magnetic stand underneath the sample plate for until a bead ring forms.
- 60. **Program: Manual Pipet 250ul, 2 times, speed 3.** Aspirate and discard the cleared supernatant into a 2ml deep well waste plate.
- 61. Repeat step 57 to 60.
- 62. **Program: Pipet 30ul, speed 5.** Dispense a total of $\underline{\underline{A}}$ 30 $\mu \underline{L}$ nuclease-free water into the sample plate.
- 63. **Program: Pipet/Mix 20ul, 30 cycles, speed 7.** Program the Integra to mix nuclease-free water with the beads. Keep tips.
- 64. **Program: Manual Pipet 30ul, speed 3.** Transfer the plate to the magnetic stand and pellet the beads for 00:05:00 , then aspirate and dispense the eluted RNA to a new 96 V-well plate.
- 65. Store RNA sample immediately at 🖁 -80 °C .