5. Lee, H.K., Lee, C.K., Tang, J.W.T., Loh, T.P. and Koay, E.S.C., 2016. Contamination-controlled high-throughput whole genome sequencing for influenza A viruses using the MiSeq sequencer. Scientific reports, 6(1), pp.1-11.
6. Imai, K., Tamura, K., Tanigaki, T., Takizawa, M., Nakayama, E., Taniguchi, T., Okamoto, M., Nishiyama, Y., Tarumoto, N., Mitsutake, K. and Murakami, T., 2018. Whole genome sequencing of influenza A and B viruses with the MinION sequencer in the clinical setting: a pilot study. Frontiers in Microbiology, 9, p.2748.
7. Zhou, B. and Wentworth, D.E., 2012. Influenza A virus molecular virology techniques. Influenza virus: methods and protocols, pp.175-192.
8. Zhou, B., Lin, X., Wang, W., Halpin, R.A., Bera, J., Stockwell, T.B., Barr, I.G. and Wentworth, D.E., 2014. Universal influenza B virus genomic amplification facilitates sequencing, diagnostics, and reverse genetics. Journal of clinical microbiology, 52(5), pp.1330-1337.
10. Bruinsma, S., Burgess, J., Schlingman, D., Czyz, A., Morrell, N., Ballenger, C., Meinholz, H., Brady, L., Khanna, A., Freeberg, L. and Jackson, R.G., 2018. Bead-linked transposomes enable a normalization-free workflow for NGS library preparation. BMC genomics, 19(1), pp.1-16.
Zhou, B., et al. (2009). Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza A viruses. Journal of Virology, 83(19), 10309–10313. https://doi.org/10.1128/JVI.01109-09
Ghedin, E., et al. (2005). Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature, 437(7062), 1162–1166. https://doi.org/10.1038/nature04239
Watson, S. J., et al. (2015). Viral population analysis and minority-variant detection using short read next-generation sequencing. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1678), 20140203. https://doi.org/10.1098/rstb.2014.0203