

Jun 03, 2024

In 2 collections

DOI

dx.doi.org/10.17504/protocols.io.eq2lywn5qvx9/v1

Alan K. L. Liu^{1,2}, Laura Parkkinen^{1,2}

¹Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3PT, UK;

²Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK

Cláudia C. Mendes

University of Oxford

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.eq2lywn5qvx9/v1

Protocol Citation: Alan K. L. Liu, Laura Parkkinen 2024. Immunofluorescence labelling and imaging of cholinergic interneurons in post-mortem human brain tissues. **protocols.io** https://dx.doi.org/10.17504/protocols.io.eq2lywn5qvx9/v1

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: May 09, 2024

Last Modified: June 03, 2024

Protocol Integer ID: 99495

Keywords: imaging of cholinergic interneuron, cholinergic interneuron, striatal astrocytes in formalin, striatal astrocyte, astrocyte, immunofluorescence labelling, brain, formalin fixed paraffin embedded, imaging, immunofluorescence, protocol details immunofluorescence labelling

Abstract

This protocol details immunofluorescence labelling and imaging of cholinergic interneurons along with striatal astrocytes in formalin-fixed paraffin-embedded (FFPE) post-mortem human brain tissues.

Troubleshooting

Collection and fixation of post-mortem human brain tissues

- 1 Collect 6 µm-thick sections of formalin-fixed paraffin-embedded (FFPE) tissues containing the anterior basal ganglia at the level of nucleus accumbens.
- 2 Place tissue sections in an oven at 70°C for 30 mins.
- 3 Dewax tissue sections in xylene (3×5 mins).
- Rehydrate tissue sections through decreasing concentration of industrial denatured alcohol (IDA) (100%, 100%, 90%, 70%; 5 mins each)and subsequently in distilled water (5 mins).

Primary Antibody

- Perform heat-induced epitope retrieval by placing tissue sections in autoclave (121°C, 20 mins) in 0.01 M sodium citrate buffer (pH 6.0).
- 6 Rinse in PBS (3×5 mins).
- 7 Incubate samples at 4°C overnight with a mixture of the following primary antibodies:
 - anti-ChAT antibodies (1:50, AB144P; Millipore, UK; RRID:AB_2313845)
 - anti-GFAP antibodies (1:2000; Z0334; Agilent Dako, Santa Clara, United States; RRID:AB 10013382).

Note

Antibodies were diluted in 0.3% Triton X-100, 2% fetal bovine serum (FBS) and PBS.

Secondary Antibody

8 Rinse samples in PBS $(3 \times 5 \text{ mins})$.

- 9 Prepare Secondary Antibody mixture of Alexa Fluor 488-conjugated donkey antirabbit secondary antibody (1:200; A-11055; ThermoFisher Scientific, UK) and Alexa Fluor 594-conjugated donkey anti-goat secondary antibody (1:200; ThermoFisher Scientific, UK) diluted in 0.1% Triton-X in PBS.
- 10 Incubate sections in Secondary Antibody mixture in the dark (covered with foil) for 1 hour at room temperature.

Mounting

- 11 Incubate sections with TrueBlack® Lipofuscin Autofluorescence Quencher (1:20 with 70% ethanol; Biotium, Fremont, CA, United States) for 30 seconds to block endogenous fluorescence signal.
- 12 Rinse in PBS (3×2 mins).
- 13 Mount and coverslip with Vectashield antifade mounting medium with DAPI (H1900, Vector Laboratories, Peterborough, UK).

Confocal Imaging and Analysis

- 14 Visualise immunofluorescent-stained slides using Zeiss 880 Airyscan inverted confocal microscope (Carl Zeiss).
- 15 Acquire images using 10x objectives (Plan-Apochromat/0.45 NA) and 63x objectives (Plan-Apochromat, oil immersion; DIC M27/1.4 NA) with laser excitation at 405 nm (solid state), 488 nm (Argon), and 561 nm (solid state).
- 16 Perform image capture and processing using the Zen Black and Zen Blue (Carl Zeiss, Germany) software.