

Nov 13, 2024

DOI

dx.doi.org/10.17504/protocols.io.yxmvm9xpol3p/v1

Nicolas Dzamko¹, Jessica Chedid¹

¹University of Sydney

courtney.wright Wright

University of Sydney

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.yxmvm9xpol3p/v1

Protocol Citation: Nicolas Dzamko, Jessica Chedid 2024. Immunoblotting protocol for dopamine and cortical iPSC-derived neurons with different Parkinsonian mutations. **protocols.io** https://dx.doi.org/10.17504/protocols.io.yxmvm9xpol3p/v1

Manuscript citation:

https://doi.org/10.1101/2024.10.07.617117

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: November 13, 2024

Last Modified: November 13, 2024

Protocol Integer ID: 111984

Keywords: cortical cells, immunoblot, western blot, PD, alpha synuclein, P62, GBA, Rab-10, B-actin, neurons with different parkinsonian mutation, different parkinsonian mutation, different parkinson, parkinson, cortical ipsc, derived neuron, glucocerebrosidase protein, immunoblotting protocol, method for immunoblotting, differentiated vmda, mutations for quantification, mutation, protein

Funders Acknowledgements:

Michael J Fox Foundation Grant ID: ASAP-000497

Abstract

This protocol details the method for immunoblotting of differentiated VMDA and cortical iPSC's from different Parkinson's mutations for quantification of Parkin, α -syn, Rab-10 and glucocerebrosidase proteins.

Materials

Solutions

■ 1 x MES buffer 50 mL 20x MES Buffer 950 mL dH20 *make 1 L at a time

■ 10 x Transfer buffer (1L): 105 g Glycine 22.5 g Tris 1L dH2O

■ 1 x Transfer Buffer (15% methanol)

100 mL 10x Transfer buffer 750 mL dH20 150 mL Methanol

Note: Should be made up fresh (place in cold room or on ice to cool prior to transfer)

- 10x TBS buffer (1L): 87 g Sodium Chloride 12 g Tris * pH to 7.4
- 1x TBS + 0.1% Tween 20 (TBS-T) 100 mL 10x TBS buffer 1 mL Tween-20 900 mL dH20 *use magnetic stirrer to dissolve Tween into solution
- 5% Skim Milk in TBST 5 g skim milk powder 100 mL TBS-T
- Stripping buffer (1L) 15 g glycine 1g SDS 10 ml Tween20 - Adjust pH to 2.2
- Bring volume up to 1 L with ultrapure water.

Antibodies

Antibody	Company	Cat. No.	Dil. Factor	Molecular weight
alpha synuclein	BD Biosciences	610787	1:1000	14kDa
P62/SQSTM 1	Abcam	ab56416	1:1000	62 kDa
GBA	Abnova	H00002629 -M01	1:1000	62 kDa
Rab-10	Cell Signalling Technologie s	8127S	1:1000	23 kDa
B-actin	Abcam	ab6276	1:50000	37 kDa

Primary antibodies

Antibody	Company	Cat. No.	Dil. Factor
Anti-Mouse IgG (H+L) HRP Conjugate	Bio-Rad	1706516	1:5000
Anti-Rabbit IgG (H+L) HRP Conjugate	Bio-Rad	1706515	1:5000

Secondary antibodies

Troubleshooting

Safety warnings

For hazard information and safety warnings, please refer to the SDS (Safety Data Sheet) for each of the raw materials used.

Ethics statement

Experiments using human iPSCs were approved by the Human Research Ethics Committee at the University of Sydney (2017/094). Application of this protocol may need prior approval by the users' institutional review board (IRB) or equivalent ethics committee(s).

Before start

Ventral midbrain progenitors and Cortical neural progenitors were generated from iPSC according to the methods of Gantner and colleagues (1, 2).

BCA Assay and Sample preparation

- 1 Thaw samples and centrifuge at 12000 rpm, 4°C, 4°C, 00:20:00
- 2 Transfer supernatant to new microcentrifuge tubes and discard pellet.
- Perform BCA assay as per manufacturer's protocol to determine protein concentration of lysates
- 5 Store samples at 4 -20 °C until ready to run western blot

Running Gels

- Thaw samples from freezer on ice and place on heating block for 00:10:00 at 70 °C
- 10m
- While waiting for samples to heat up remove the white sticker and gel comb carefully from
 - gel(s) and rinse with dH2O.
- Place 12-well gel(s) into casket and clip in place. Fill up the centre part with 1 X MES buffer and check for any leaks. Once in place, add 1 X MES to the outer space until half way full.
- 9 After samples have heated, quickly vortex and spin down.
- Load Δ 4 μ L of the ladder and Δ 25 μ L of the samples prepared at 1 mg/mL (or as needed)
- Run gel at 180 V (constant voltage) for 50 01:00:00 at 8 Room temperature

1h

Transfer and blocking 2h 30m 12 Obtain large container and fill with 1 X transfer buffer 13 For each gel obtain a sandwich apparatus, 2 X sponges, 2 X filter paper, 1 X nitrocellulose membrane (0.45 um) 14 Open sandwich apparatus and place components in the following order: sponge, filter gel, nitrocellulose membrane, filter paper, sponge 15 Perform transfer at 90 V (constant voltage) for 60 01:30:00 in cold room 1h 30m 16 Place membrane in container and cover with 5% skim milk in TBS-T solution, place on 1h rocking platform for 01:00:00 Primary and secondary antibody incubations 1h 20m 17 Prepare primary antibody in 5% skim milk in TBS-T solution (dilution 1:1000) 18 Cut blots using scissors into smaller strips as desired 19 Incubation at 4 °C overnight with gentle rocking 20 Wash blots with TBS-T every 3 times for 00:10:00 10m 21 Prepare secondary antibody (anti-mouse or anti-rabbit HRP conjugated antibody) in 2.5% skim milk in TBS-T solution 22 Incubation at | Room temperature | for | 01:00:00 | with gentle rocking 1h 23 Wash blots with TBS-T every 3 times for 00:10:00 10m

Blot imaging

- 24 Visualise bands using BioRad ChemiDoc MP Imaging System chemiluminescence mode
- Band analysis and quantication is performed in ImageLab, all proteins are normalised to
 B actin used as a loading control

Stripping and

buffer incubate for

10m

26 If stripping membrane is required to reprobe withanother antibody, add Abcam mild stripping

Room temperature with rocking.

Wash membrane 3 times with TBS-T for 00:10:00 each, them block in 5% skim milk in

1h 10m

TBS-T solution for 50 01:00:00

Repeat step 17 onwards with new primary antibody as required.

(C) 00:10:00 at

Protocol references

- 1. Gantner, C.W., et al., An optimized protocol for the generation of midbrain dopamine neurons under defined conditions. Star Protocols, 2020. 1(2): p.100065.
- 2. Gantner, C.W., et al., FGF-MAPK signaling regulates human deep-layer corticogenesis. Stem cell reports, 2021. 16(5): p. 1262-1275