

Apr 13, 2023

Version 2

HTTM: Transposon mutagenesis V.2

PLOS One

Peer-reviewed method

DOI

dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v2

Antoine Champie¹, Amélie De Grandmaison¹

¹Université de Sherbrooke

Antoine Champie

Université de Sherbrooke

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

OPEN ACCESS

DOI: https://dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v2

External link: https://doi.org/10.1371/journal.pone.0283990

Protocol Citation: Antoine Champie, Amélie De Grandmaison 2023. HTTM: Transposon mutagenesis. protocols.io

https://dx.doi.org/10.17504/protocols.io.36wgq72n3vk5/v2

Manuscript citation:

Champie A, Grandmaison AD, Jeanneau S, Grenier F, Jacques P, Rodrigue S (2023) Enabling low-cost and robust essentiality studies with high-throughput transposon mutagenesis (HTTM). PLoS ONE 18(4): e0283990. doi: 10.1371/journal.pone.0283990

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: August 16, 2022

Last Modified: April 13, 2023

Protocol Integer ID: 68718

Keywords: HDTM, TnSeq, HTTM, transposon mutagenesis of targets cell, transposon mutagenesi, transposon, part of the httm

protocol, httm protocol, targets cell, cell

Abstract

Part of the HTTM protocol dedicated to the transposon mutagenesis of targets cells.

Troubleshooting

Before start

Per plate refers to the number of 96 well plates of target cells that need to be processed.

Day 1

3m

- 1 (1-A) Make a LB (Diaminopimelic acid [Dap], Ampicillin [Amp], Spectinomycin [Spec]) pre-culture (L2 mL per plate minimum) of the donor strain eAC494 and incubate with agitation at 37 °C overnight.
- 2 (1-B) Prepare the 96 deep-well plates for conjugation :
- 2.1 Preheat the deep-well plates at 60 °C in a sterile incubator for 00:10:00

■ Prepare \$\leq\$ 50 mL of LB-Agar for each plate and keep it above \$\leq\$ 70 °C

- Using a multichannel pipette transfer $4 300 \, \mu L$ of molten LB-Agar in each well of the deep-well plates, paying attention not to create bubbles by keeping the tips on the side of the wells and not dispensing all the liquid.
- 2.3 Let dry in a biological hood for 3 days or until well dried but not cracked. (Optional : can be placed on a heating mat set at \$\mathbb{8}\$ 30 °C to shorten the drying time to 2 days).

Λ

10m

Day 2

- 4 (2-B) Fill the deep-well plates with chosen medium (♣ 1.5 mL per well) and inoculate each well with the recipient strains. Incubate overnight at ♣ 37 °C

Day 3

10m

- 6 (3-B) Resuspend the pellet in 4 10 mL LB per plate.
- 7 (3-C) Dispense \perp 100 μ L of concentrated donor culture into each recipient well.
- 8 (3-D) Pellet the cells by centrifugation \$ 4000 x g, 00:10:00 and remove the supernatant with the Aspir-8 + 50 μ L guide.
- 8.1 If not using the Aspir-8 + 50 μ L guide, remove all supernatant and add 50 μ L of LB to each well.
- 9 (3-E) Resuspend by agitating on a shaker (5 900 rpm, 00:10:00 and do a quick spin to recover all the cells at the bottom of the plate.
- 10 (3-F) Take $\[\] 50 \ \mu L \]$ from the resupended cells and deposit them on the dried agar at the bottom of the prepared deep-well plate. Let dry $\[\] 01:00:00 \]$ in a biological hood and cover with a gas permeable plate seal.
- 11 (3-G) Incubate the deep-well plates 👏 02:00:00 at 🖁 37 °C for conjugation.
- 12 (3-H) Add $400 \, \mu L$ of selection media to each well and resuspend by agitating on a shaker at $900 \, \text{rpm}$, 90:10:00 and do a quick spin to recover all the cells at the bottom of the plate.
- 14 (3-J)/(3-K) (Optional) Using $\[\underline{\mathbb{L}} \]$ 20 $\[\mu \mathbb{L} \]$ of the conjugation mix make serial dilutions and spot on selective plates to estimate the number of mutants obtained per well. Selection markers :

10m

1h

2h

- Donor strain: Dap, Amp, Spec
- Recipient : Target-dependant
- Transposon mutants : Target-dependant + Spec

Days 4 to 7

15 Make a passage from the previous plate to a new deep-well plate filled with selective medium.

The volume of the passage (optimized to pass 3 millions mutants in *E.coli*) varies from day to day:

- △ 200 μL of day 4 (4-A)
- \perp 100 μ L on day 5 (5-A), 6 (6-A) and 7 (7-A)
- 16 (7-B) (Optional) In order to have a backup in case of an issue during DNA extraction, make a glycerol stock using \perp 150 μ L of the culture after the passage, and store it at **₽** -80 °C ⋅

Day 8

17 (8-A)/(8-B) Pellet cells by centrifugation 3 4000 x g, 00:10:00 and remove the supernatant. Aspir-8 can be used to accelerate this step. Cells are ready for DNA extraction and can be stored at 4 -80 °C until ready to process.