

Oct 11, 2024

Version 2

HPF-FS of Solarion arienae for transmission electron microscopy V.2

DOI

dx.doi.org/10.17504/protocols.io.dm6gpzp15lzp/v2

Marek Valt1

¹Charles University, Faculty of Science, Department of Zoology, Prague, Czechia

SUM-K

Marek Valt

Charles University, Faculty of Science, Department of Zoolog...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.dm6gpzp15lzp/v2

Protocol Citation: Marek Valt 2024. HPF-FS of Solarion arienae for transmission electron microscopy. **protocols.io** https://dx.doi.org/10.17504/protocols.io.dm6gpzp15lzp/v2 Version created by Marek Valt

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: October 11, 2024

Last Modified: October 11, 2024

Protocol Integer ID: 109647

Keywords: fs fixation for transmission electron microscopy, fs of solarion arienae, solarion arienae, transmission electron

microscopy, microscopy, fs fixation, hpf, standard hpf

Abstract

This is an optimized version of the protocol for standard HPF-FS fixation for transmission electron microscopy that was used for the fixation of the culture of Solarion arienae.

Troubleshooting

Cell harvest

1 Centrifuge a well-grown culture at 1500 g at 4 °C.

5m

1.1 Discard supernatant and collect pellet.

Cryo-immobilization by high-pressure freezing

- The obtained pellet was cryo-immobilized by high-pressure freezing (Leica EM ICE) in gold-plated, 3 mm wide copper carriers with a cavity of 0.1 mm (Wohlwend GmbH).
- After high-pressure freezing, the samples were transferred to precooled (-90 °C) fixative medium (2% OsO4 in 100% acetone) and processed by automatic freeze substitution (Leica EM AFS), as follows:

3.1 incubation at -90 °C for 96 hours

4d

3.2 warm up to -20 °C (5°C/hour for 14 hours)

14h

3.3 incubation at -20 °C for 24 hours

1d

3.4 warm up to 4°C (3°C/hour for 8 hours)

8h

3.5 Incubation at 4°C for 18 hours

- 18h
- 4 After AFS, the samples were transferred to room temperature and washed with 100% acetone (3x).
- 5 After washing, infiltrate sequentially for 1h each with:

5.1 resin-acetone mixture 1:2

		1h
		\$
5.2	resin-acetone mixture 1:1	1h
		\$
5.3	resin-acetone mixture 2:1	1h
6	Finally, the samples were infiltrated with pure resin overnight (EMbed 812)	
7	Lastly, polymerize for 48 hours at 60 °C	2d
		f°

Section preparation

- 8 Cut sections.
 - For Solarion HPF-FS, 90nm thick sections were cut with a diamond knife on an an EM UC6 (Leica) ultramicrotome.
 - 9 post-contrast with uranyl acetate and lead citrate.
- 10 Lastly, coat with a carbon layer.