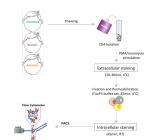
Jan 16, 2019

HIV-Flow assay



DOI

dx.doi.org/10.17504/protocols.io.w4efgte

Marion Pardons¹, Nicolas Chomont¹ ¹University of Montreal, CRCHUM

Marion Pardons

DOI: dx.doi.org/10.17504/protocols.io.w4efgte

External link: https://doi.org/10.1371/journal.ppat.1007619

Protocol Citation: Marion Pardons, Nicolas Chomont 2019. HIV-Flow assay. protocols.io

https://dx.doi.org/10.17504/protocols.io.w4efgte

Manuscript citation:

Pardons M, Baxter AE, Massanella M, Pagliuzza A, Fromentin R, Dufour C, Leyre L, Routy J, Kaufmann DE, Chomont N (2019) Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog 15(2): e1007619. doi: <u>10.1371/journal.ppat.1007619</u>

License: This is an open access protocol distributed under the terms of the **<u>Creative Commons Attribution License</u>**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

Created: January 14, 2019

Last Modified: January 16, 2019

Protocol Integer ID: 19302

Keywords: Flow cytometry, HIV, reservoirs

Abstract

The purpose of this document is to define the procedure of the HIV-Flow protocol, an assay developed to measure the size the translation-competent viral reservoir in HIV-infected individuals and to phenotypically characterize these cells.

Guidelines

In each experiment, include PBMCs from an uninfected control donor to set the threshold of positivity
 The frequency of p24 double positive cells (KC57+, 28B7+) is determined by flow cytometry in gated viable T cells. Please note that this gate should include both CD4 positive and CD4 negative T cells (since CD4 is dowregulated by productive HIV infection)

Materials

- · 1 bottle (500mL) of RPMI (Cellgro, 10-040-CV)
- · 50mL of Fetal Bovine Serum (FBS, PAA, A15-752)
- · Penicillin-Streptomycin (Life Technologies, 15070-063)
- · 50mL of Bovine Serum (BS)
- · PBS 1X pH7.2 (Wisent, 311-013-CL)
- · Human Serum (Atlanta Biologicals, 540110)
 - Aliquot (5-10mL) and keep at -20°C. After thawing, filter with a falcon cell strainer.
- · Trypan Blue 0.4% (Gibco, 15250)
- · 50mL PP tubes (BD Falcon, 352098)
- $\cdot\,$ 5, 10 and 25 mL disposable pipettes (BD Flacon, 356542, 357551 and 357525)
- · 1.5ml screw-cap microtubes (Sarstedt, 72.692.005)
- $\cdot\,$ Staining buffer: PBS/HS4% (2mL human serum + 48mL of PBS).
- · Foxp3 / Transcription Factor Staining Buffer Set (Ebioscience; 00-5523)
- \cdot Sterile Water
- · EasySep Buffer (StemCell, 20144)
- · EasySep Human CD4 T cell enrichment kit (Stemcell, 19052)
- · Phorbol 12 myristate 13 acetate (PMA) (Sigma, P8139)
- · Ionomycin (Sigma, I9657)
- · Brefeldin A (Sigma, B5936-200UL)
- <u>ARV cocktail 100X</u>: Use RPMI to prepare a 100X ARV cocktail solution containing: 20µM 3TC (for a final concentration of 200nM)
 - 20µM RAL (for a final concentration of 200nM)
 - Aliquot at 200µL in 1.5mL microtubes; Store at -20°C.
- · p24 KC57-PE (Beckman Coulter, 6604667)
- · p24 28B7-APC (Medimabs, MM-0289-APC)

Before start

Please note that the p24 antibodies need to be titrated upon reception of each new batch.

Day 1

1 Thaw cryopreserved PBMCs (10-50 ×10⁶ cells depending on cell availability and CD4 counts) collected from an HIV-infected individual and an equivalent number of cells from an uninfected control. After thawing, resuspend the cells in 25mL of cRPMI.

2 Count the cells with Trypan Blue.

- 3 Keep PBMCs from the uninfected control donor for FACS compensations (around 100,000 cells per antibody used).
- 4 Centrifuge the cells (5min, 1,500rpm). Discard supernatant and break the pellet of cells tapping it.
- 5 Negative selection of CD4 T cells According to cell count:
 - If more than 50.10^6 cells: Resuspend the pellet with 800μ L of Easysep Buffer and complete up to a concentration of 50×10^{6} cells/mL.
 - If $10 \times 10^{6}-50 \times 10^{6}$ cells: Resuspend the pellet with 800μ L of Easysep Buffer Transfer the cell suspension in a 14mL round bottom tube.
 - Add 25µL/mL of cells of Ab cocktail (19052). Incubate 10min at RT.
 - Vortex beads 30s and add $50\mu L$ of beads/mL of cells. Incubate 5min at RT.
 - Add EasySep buffer up to 5mL (if cell volume <5mL) and up to 8mL (if cell volume >5mL).
 - Place the tube (without the cap) in the magnet for 5min.
 - Pipet cautiously the cells and transfer them to a 50mL tube containing cRPMI up to 20mL.
 - Centrifuge the cells (5min, 1,500rpm), and discard the supernatant
- 6 Resuspend the cells in 800μL of cRPMI + ARV (Stock ARV = 100X) and count the cells in Trypan Blue.

- 7 Resuspend the cells at 2×10⁶ cells/mL in cRPMI + ARV (Stock ARV = 100X) and incubate at 37^oC 5% CO2 in culture plate
 - Less than 200uL: 96-well plate
 - 200uL-500uL: 48-well plate
 - 500uL-1.5mL: 24-well plate
 - 1.5mL-2.5mL: 12-well plate
 - 2.5mL-3.5mL: 6-well plate
- 8 Optional: For immunophenoytping, add BFA (Brefeldin A) to the culture medium (Dilution 2,000X).

- Of note, not all markers will retain their expression after PMA/ionomycin stimulation despite the use of BFA. This should be tested.

- If the goal of the experiment is only to measure the frequency of p24+ (without phenotyping), do not perfom this step.

- 9 Rest the cells for at least 1hour before proceeding to PMA/Ionomycin stimulation
 - a) If ART-treated individuals: PMA 162nM, Ionomycin 1µg/mL, 24h
 Dilution 10X: 10µL of PMA + 10µL of iono + 80µL of medium
 Dilution 100X: 10µL of diluted PMA/iono per mL of cells
 - b) If untreated individuals: PMA 25nM, ionomycin 1µg/mL, 18h
 Dilution 64.8X: 2.3µL PMA + 15µL iono + 132.7µL of medium
 Dilution 100X: 10µL of diluted PMA/iono per mL of cells
 Incubate cells for 18h or 24h (for samples from untreated or treated individuals, respectively) at 37°C 5% CO2

Day 2

- 10 Collect the cells in 5mL tubes and wash the wells with PBS. Do not exceed 10×10⁶ cells per tube.
- Centrifuge at 1,800rpm for 3min. Discard the supernatant and resuspend the cells in
 200μL of PBS + Vivid (5μL Vivid 1/10 + 195μL PBS/condition).Comment: Resuspend 2μl
 Vivid with 18μl of PBS = 20μL
- 12 Incubate the cells for 20-30min at 4°C
- 13 Wash once with 800µL of PBS/HS4%. Centrifuge (1,800 rpm, 3min). Discard the supernatant
- 14 Perform the extracellular staining (using your antibodies for cell-surface antigens of interest) in PBS/HS4% (final volume = 100μL/tube) (20-30min, 4°C)

- 15 Wash with 1.8mL of PBS/HS4%. Centrifuge (1,800rpm, 3min). Discard the supernatant
- 16 Fix and Perm with 100µl of FoxP3 FixPerm Buffer (Dilution 1:4, 1mL concentrate + 3mL diluent)(45min, 4°C)
- 17 Wash with 1.8mL of FoxP3 PermBuffer (Dilution 10X: 1mL PermBuffer + 9mL H2O). Centrifuge (3min, 2,100rpm). Discard the supernatant
- 18 Perform the intracellular staining in FoxP3 PermBuffer (final volume = 100μL of dilution C/tube) (45min, RT).

Comments

- Dilution A (KC57): 10-fold dilution (1µL+9µL FoxP3 Buffer)
- Dilution B (p24 28B7): 10-fold dilution (1µL+9µL FoxP3 Buffer)
- Dilution C: add 1µL of each dilution per 100µL (1µL DilA + 1µL Dil B + 98µL of FoxP3 PermBuffer)
- Do not vortex the antibodies and the mixes

Please note that the p24 antibodies need to be titrated upon reception of each new batch.

- 19 Wash with 1.8mL of FoxP3 PermBuffer. Centrifuge (2,100 rpm, 3min). Discard the supernatant
- 20 Resuspend cells in 100-200µL of PBS (NO HUMAN SERUM!)
- 21 Analyze on a Flow Cytometer.