High-Throughput Beta-glucuronidase (GUS) assay for Phaeodactylum tricornutum

Erin Garza¹, Vincent A Bielinski²

¹J. Craig Venter Institute; ²J. Craig Venter Institute, Synthetic Biology & Bioenergy Group

ABSTRACT

A high-throughput method for measuring β-glucuronidase (GUS) activity in the diatom Phaeodactylum tricornutum. This protocol has been optimized for 250 µl volumes. For larger volumes see the following protocol dx.doi.org/10.17504/protocols.io.hefb3bn, which this protocol was based off of.

DOI

dx.doi.org/10.17504/protocols.io.bbexijfn

PROTOCOL CITATION

Erin Garza, Vincent A Bielinski 2020. High-Throughput Beta-glucuronidase (GUS) assay for Phaeodactylum tricornutum. protocols.io

https://dx.doi.org/10.17504/protocols.io.bbexijfn

KEYWORDS

Gus assay, diatoms, Phaeodactylum tricornutum, high-throughput

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED

Jan 16, 2020

LAST MODIFIED

Jan 17, 2020

PROTOCOL INTEGER ID

31927
BEFORE STARTING

Phaeodactylum tricornutum cultures were initially grown in 5 ml L1 + antibiotics in a 50-ml conical at 18°C until the cell concentration reached at least 1x10^6 cells ml^-1.

1. **Centrifuge**

 Transfer 250 µl of each *P. tricornutum* culture to a 96-well plate and centrifuge at 3000 x g for 10 min. Discard supernatant.

2. **Lyse**

 To lyse the cells, add 150 µl bacterial protein extraction reagent (B-PER, ThermoFisher) to each well and mix by pipetting.

3. **Centrifuge**

 Centrifuge plate for 10 min at 3000 x g. Transfer supernatants to a new 96-well plate, being careful not to disturb the cell debris.

4. **Extract**

 Transfer 50 µl of each lysate to a new plate and add 125 µl GUS extraction buffer + 1 mM MUG to each well. Incubate the plate for 1 h at 37°C.

 GUS extraction buffer = 50 mM NaPO_4 H_2 (pH 7), 0.1% Triton X-100, and 10 µM βME

5. **Stop Reaction**

 To stop the reaction, add 150 µl GUS stop buffer (0.2 M Na_2CO_3) to each well and mix by pipetting.

6. **Read fluorescence**

 Transfer 200 µl quenched reaction to an opaque 96-well plate.
7 Determine fluorescence using a plate reader. Settings: excitation- 360 nm; emission- 440 nm.

8 If fluorescence readings are too high to get a readout, dilute with additional stop buffer.

Normalization

9 Use remaining cell lysates to perform a BCA assay (or an equivalent assay) to normalize the GUS activity to total cell protein for each culture.