

Jan 18, 2020

High-Throughput Beta-glucuronidase (GUS) assay for Phaeodactylum tricornutum

DOI

dx.doi.org/10.17504/protocols.io.bbexijfn

Erin Garza¹, Vincent A Bielinski²

¹J. Craig Venter Institute; ²J. Craig Venter Institute, Synthetic Biology & Bioenergy Group

Protist Research to Opti...

JCVI West Protocols

Erin Garza

J. Craig Venter Institute

DOI: dx.doi.org/10.17504/protocols.io.bbexijfn

Protocol Citation: Erin Garza, Vincent A Bielinski 2020. High-Throughput Beta-glucuronidase (GUS) assay for Phaeodactylum tricornutum. **protocols.io** https://dx.doi.org/10.17504/protocols.io.bbexijfn

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 16, 2020

Last Modified: January 18, 2020

Protocol Integer ID: 31927

Keywords: Gus assay, diatoms, Phaeodactylum tricornutum, high-throughput

Abstract

A high-throughput method for measuring β-glucuronidase (GUS) activity in the diatom *Phaeodactylum* tricornutum. This protocol has been optimized for 250 µl volumes. For larger volumes see the following protocol dx.doi.org/10.17504/protocols.io.hefb3bn, which this protocol was based off of.

Materials

MATERIALS

MUG Gold Biotechnology Catalog #MUG

Sodium carbonate Merck MilliporeSigma (Sigma-Aldrich) Catalog #222321

B-PER™ Bacterial Protein Extraction Reagent Thermo Fisher Catalog #78243

Flat bottom transparent and opaque 96-well plates

GUS extraction buffer- 50 mM NaPO₄H₂ (pH 7), 0.1% Triton X-100, and 10 μ M β ME + 1 mM 4-Methylumbelliferyl

β-D-Glucuronide (MUG)

GUS stop buffer- 0.2 M Na₂CO₃

Plate reader

Swing bucket centrifuge with plate adapter

Before start

Phaeodactylum tricornutum cultures were initially grown in 5 ml L1 + antibiotics in a 50-ml conical at 18°C until the cell concentration reached at least 1×10⁶ cells ml⁻¹.

Centrifuge

Transfer 250 μl of each *P. tricornutum* culture to a 96-well plate and centrifuge at 3000 x g for 10 min. Discard supernatant.

Lyse

To lyse the cells, add 150 μ l bacterial protein extraction reagent (B-PER, ThermoFisher) to each well and mix by pipetting.

Centrifuge

3 Centrifuge plate for 10 min at 3000 x g. Transfer supernatants to a new 96-well plate, being careful not to disturb the cell debris.

Extract

Transfer 50 μ l of each lysate to a new plate and add 125 μ l GUS extraction buffer + 1 mM MUG to each well. Incubate the plate for 1 h at 37°C.

GUS extraction buffer= 50 mM NaPO₄H₂ (pH 7), 0.1% Triton X-100, and 10 μ M β ME

Stop Reaction

- To stop the reaction, add 150 μ l GUS stop buffer (0.2 M Na₂CO₃) to each well and mix by pipetting.
- 6 Transfer 200 μl quenched reaction to an opaque 96-well plate.

Read fluorescence

- Determine fluorescence using a plate reader. Settings: excitation- 360 nm; emission- 440 nm.
- 8 If fluorescence readings are too high to get a readout, dilute with additional stop buffer.

Normalization

9 Use remaining cell lysates to perform a BCA assay (or an equivalent assay) to normalize the GUS activity to total cell protein for each culture.