Nov 06, 2019 Version 1

High Density Cultivation of Synechocystis sp. PCC 6803 using the HDC 6.10B system (CellDeg) V.1

DOI

dx.doi.org/10.17504/protocols.io.757hq9n

Oliver Mantovani¹, Dennis DD Dienst², Pia Lindberg²

¹Universität Rostock; ²Department of Chemistry - Microbial Chemistry, Ångström Laboratory, Uppsala, Sweden

CyanoWorld

Oliver Mantovani

DOI: dx.doi.org/10.17504/protocols.io.757hq9n

External link: <u>http://celldeg.com</u>

Protocol Citation: Oliver Mantovani, Dennis DD Dienst, Pia Lindberg 2019. High Density Cultivation of Synechocystis sp. PCC 6803 using the HDC 6.10B system (CellDeg). **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.757hq9n</u>

Manuscript citation:

Dienst D., Wichmann J., Mantovani O., Rodrigues J., Lindberg P. (2019) High density cultivation for efficient sesquiterpenoid biosynthesis in *Synechocystis* sp. PCC 6803.

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: October 13, 2019

Last Modified: November 06, 2019

Protocol Integer ID: 28575

Keywords: CellDeg, photoautotrophic organisms, culturing, high-density, cyanobacteria, microalgae

Abstract

The <u>CellDeg@</u> high density cultivation system is a revolutionary culturing system for photoautotrophic microorganisms. The culturing vessels come with a semi-permeable membrane on the bottom that allows the diffusion of CO_2 , while a membrane in the lid (on top of the vessel) facilitated the passage of O_2 . By placing the vessels on top of a highly concentrated carbonate buffer reservoir with high CO_2 partial pressure - in combination with constant agitation, nutrient-rich media and high light intesities - the system allows the obtainment of precedingly unparalleled cell densities [1].

This protocol has been established in the Lindberg lab at Ångström laboratory (Uppsala University) for highly efficient sesquiterpenoid production with *Synechocystis* sp. PCC 6803 using a dodecane overlay as *in situ* extractant.

The protocol has been proven successful for small-scale screening procedures over time periods of up to one week.

[1] Bähr, L., Wüstenberg, A. & Ehwald, R. J Appl Phycol (2016) 28: 783. https://doi.org/10.1007/s10811-015-0614-5

Materials

MATERIALS

X Potassium carbonate P212121

X Potassium bicarbonate Merck MilliporeSigma (Sigma-Aldrich) Catalog #237205

HDC 6.10B Starter Kit (CellDeg), CD media (dx.doi.org/10.17504/protocols.io.2bxgapn)

Preparation of precultures

1 **Example: 6 well plate precultures**

prepare standard polystyrene 6 well plates

 \rightarrow each 3 wells per strain should be sufficient to inoculate 3 replicates in the Celldeg system

- inoculate 3 mL standard BG11 medium (<u>dx.doi.org/10.17504/protocols.io.wj5fcq6</u>) with strains of *Synechocystis* sp. PCC 6803
- 👗 3 mL
- if metal induction (e.g. Cu²⁺ and/or Co²⁺) is required in the experiment use BG11 w/ modified trace metal composition → yes, they grow fine without these two trace elements :-)
- don't forget to add the appropriate antibiotics
- place the 6 well plates on a standard orbital shaker, e.g.:
 'Standard analog shaker, Model 5000 (VWR; orbit: 25 mm; frequency: 120 rpm)
- incubate at 30 °C under constant light intensities of 50-100 μmol photons · m⁻² · s⁻¹
 30 °C
- after ~ 4 days go to Step 2

Inoculation of Celldeg cultures

2 **Prepare experimental cultures from precultures**

- measure OD₇₅₀ in a spectrophotometer (e.g. plate reader)
- calculate the volume needed for inoculation of 8 mL Celldeg culture:

Note

Example:

- measured OD₇₅₀ of preculture = 1.2
- desired OD₇₅₀ in Celldeg vessel = 0.3
- desired volume in Celldeg vessel = 8.0 mL

V(preculture) = (0.3 * 8.0 mL)/1.2 = 2.0 mL

- centrifuge preculture (e.g. 2.0 mL) for 5 min at 2500 g and room temperature
 2500 x g
- resuspend pellets in 8 mL CD medium (dx.doi.org/10.17504/protocols.io.2bxgapn) including appropriate antibiotics

👗 8 mL

if desired, supply cultures with inducer molecule
 → note that higher inducer concentrations might be required under HD conditions:

Note

Example:

- for Cu²⁺-mediated induction of the P_{petE} promoter: add 4 µM CuSO₄ every second day
- for Co²⁺-mediated induction of the P_{coaT} promoter: add 30 μM CoCl₂ every day
- transfer cell culture to CellDeg vessel
- add 2 mL of dodecane to the cultures (only if *in situ* extraction is desired)
 2 mL

Cultivation vessel with dodecane overlay

Note

The CellDeg vials, since CO_2 is provided from the bottom, do not need a large headspace for gas exchange, and can be filled generously (the ~25 mL vials can easily accommodate 10 mL cultures). If no dodecane overlay is added, 10 mL culture volume should be used to quantitatively minimize evaporation effects.

Celldeg System Setup

3 Bicarbonate-carbonate buffer (reservoir preparation)

Ingredient	Concentration (M)	Concentration (g/L)
КНСОЗ	3	270.31
К2СОЗ	3	41.41

Ingredients of CellDeg carbonate buffer reservoir for a CO₂ partial pressure of **90 mbar at 20°C**

- dissolve KHCO₃ 800 mL H₂0 ▲ 800 mL
- dissolve K₂CO₃ 200 mL H₂0
- due to the high final concentrations, gentle heating (≤ 40 °C) of the solutions can accelerate the complete dissolution of the salts (in particular KHCO₃)

👗 200 mL

• you can easily up- or downscale the buffer amounts

 \rightarrow the desired mixing ratio for 3M KHCO3: 3M K2CO3 is 1:9

 due to the high final concentrations, heating of the solution can accelerate the complete dissolution of the salts

Note

Make sure that the vessel is tightly closed before you stir and heat

• as the solution doesn't get in contact with the cultures, it doesn't need to be sterilized

4 Vessel kit assembly

- depending on the size of the CellDeg system, the reservoir container has to be filled by 20% of the total volume by the concentrated carbonate solution
 → fill a standard reservoir with 200 mL bicarbonate-carbonate buffer from step 3
- attach the **filled vessels from Step 2** to the tray on top of the reservoir

Celldeg Cultivation

5 Cyanobacteria culturing

- place the assembled CellDeg system on an orbital shaker, e.g: IKA KS 130 basic orbital shaker (orbit ø = 4 mm)
 - \rightarrow shake at 320 rpm
- Incubation Chamber: Versatile Environmental Test Chamber (Sanyo) w/o humidifier
 → note that the light sources are laterally aligned
- temperature: 30 °C
 - 🖁 30 °C
- sequence of increasing light intensities: 250 μmol photons * m⁻² * s⁻¹ (0h-24h),

```
490 μmol photons * m<sup>-2</sup> * s<sup>-1</sup> (24h-48h), 750 μmol photons * m<sup>-2</sup> * s<sup>-1</sup> (tp 48h-
h)
```

xh)

- \rightarrow light intensities were measured with a Licor LI-185B quantum meter
 - \rightarrow the values are sums of multi-directional measurements

Note

Note:

The incubation chamber used here is not optimized for this cultivation type and has an upper limit in light intensities.

Following the manufacturer's recommendations - particularly regarding the quality of the light source - should distinctly improve the yields.

 the bicarbonate-carbonate buffer in the reservoir should be replaced after 4 days of culturing