

Sep 23, 2019

HiFi Gibson Assembly (Protocol for the NEBuilder® HiFi DNA Assembly Master Mix)

DOI

dx.doi.org/10.17504/protocols.io.7kchksw

Alba Balletbó¹

¹Wageningen University

iGEM Wageningen 2019

Alba Balletbó

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.7kchksw

Protocol Citation: Alba Balletbó 2019. HiFi Gibson Assembly (Protocol for the NEBuilder® HiFi DNA Assembly Master Mix). **protocols.io** https://dx.doi.org/10.17504/protocols.io.7kchksw

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: September 23, 2019

Last Modified: September 23, 2019

Protocol Integer ID: 28004

Keywords: hifi gibson assembly, protocol for dna assembly, gibson assembly, dna assembly, dna

Abstract

This is the protocol for DNA Assembly using the NEBuilder® HiFi DNA Assembly Master Mix.

Guidelines

Optimal Quantities

NEB recommends a total of 0.03–0.2 pmols of DNA fragments when 1 or 2 fragments are being assembled into a vector, and 0.2–0.5 pmols of DNA fragments when 4–6 fragments are being assembled. Efficiency of assembly decreases as the number or length of fragments increases. To calculate the number of pmols of each fragment for optimal assembly, based on fragment length and weight, we recommend the following formula, or using the tool, **NEBiocalculator**.

pmols = (weight in ng) x 1,000 / (base pairs x 650 daltons) 50 ng of 5000 bp dsDNA is about 0.015 pmols 50 ng of 500 bp dsDNA is about 0.15 pmols

The mass of each fragment can be measured using the NanoDrop instrument, absorbance at 260 nm or estimated from agarose gel electrophoresis followed by ethidium bromide staining.

Materials

MATERIALS

🔀 NEBuilder HiFi DNA Assembly Master Mix - 10 rxns New England Biolabs Catalog #E2621S

Troubleshooting

1 Set up the following reaction on ice (to 20µl total volume):

	2-3 Frag men t Asse mbly	4-6 Frag men t Asse mbly
DNA Rati o	Vect or:In sert = 1:2	Vect or:In sert = 1:1
Total amo unt of Frag men ts	0.03 -0.2 pmol s	0.2- 0.5 pmol s
NEB uilde r HiFi DNA Asse mbly Mast er Mix	10 μL	10 μL
Deio nize d H2O	10 - Χ μL	10 - Χ μL
Total Volu me	20 μL	20 μL

- 2 Incubate samples in a thermocycler at 50°C for 15 minutes (when 2 or 3 fragments are being assembled) or 60 minutes (when 4-6 fragments are being assembled).
- 3 Following incubation, store samples on ice or at -20°C for subsequent transformation.
- 4 Transform into chemically competent cells (1-5μL) or in electrocompetent cells (1 μL, diluted 10x or 5 μ L, after purification to remove salts).