Dec 20, 2018

GUIDE-seq simplified library preparation protocol (CRISPR/Cas9 off-target cleavage detection)

DOI

dx.doi.org/10.17504/protocols.io.wikfccw

Nagendra Palani¹

¹University of Minnesota Genomics Center

Nagendra Palani University of Minnesota

DOI: <u>dx.doi.org/10.17504/protocols.io.wikfccw</u>

Protocol Citation: Nagendra Palani 2018. GUIDE-seq simplified library preparation protocol (CRISPR/Cas9 off-target cleavage detection). **protocols.io** <u>https://dx.doi.org/10.17504/protocols.io.wikfccw</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We developed this protocol at the University of Minnesota Genomics Center (UMGC) and it is working. UMGC will prepare GUIDE-seq NGS libraries and sequence them as a service.

Created: December 20, 2018

Last Modified: December 20, 2018

Protocol Integer ID: 18732

Keywords: guideseq, crispr, cas9, offtarget, cleavage, NGS, library

Abstract

GUIDE-seq is an experimental method to detect off-target cleavages caused during CRISPR/Cas editing.

See publication <u>https://doi.org/10.1038/nbt.3117</u> for details about the method, the protocol used, and the analysis performed.

We identified several areas of improvement in the published protocol for GUIDE-seq NGS library preparation and developed a simplified protocol that is easier to perform & less expensive. The new protocol is also load-and-go compatible with standard sequencing runs on all Illumina instruments (using the kit SBS reagents & default instrument settings) compared to the NBT protocol that requires the libraries to be run on a MiSeq with some tweaks to the software configuration.

Notable changes:

1. Moved the UMI (Unique Molecular Identifier) from the Y-adapter to be inline with the insert. UMI is now sequenced as part of the sequencing read (R2 on a paired-end run). This eliminates the need to export index reads from the MiSeq.

2. Removed the sample index from the Y-adapter and changed the PCR scheme. Now, only a single adapter is required for ligation to any number of samples, PCR1 is for enrichment of the dsOligo - genome junction, PCR2 is to add sample-specific indexes to the enriched amplicons.

See oligo designs for further information.

3. Replaced sonication based shearing followed by end-repair with a one-pot, one-step enzymatic fragmentation + end-repair kit from New England Biolabs.

Guidelines

Time from genomic DNA sample to sequencing-ready library takes 2 days.

Protocol can be performed with 1.5 ml tubes or 96-well plates.

Materials

MATERIALS

🔀 TE buffer

X NEBNext Ultra II Q5 Master Mix New England Biolabs Catalog #E7649

🔀 Thermal cycler

NEBNext Ultra II FS DNA Library Prep with Sample Purification Beads - 24 rxns **New England Biolabs Catalog #**E6177S

Oligonucleotides required:

TA_Adaptor_Top - /5Phos/CTCACCGCTCTTGTAGS NNNNNNN CTGTCTCTTATACACATCTCCGAG*C **TA_Adaptor_Bottom** - CTACAAGAGCGGTGAGT

dsODN_Enrich_Plus - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNN GTTTAATTGAGTTGTCATATGTTAATAACG*G dsODN_Enrich_Minus - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG NNN CCGTTATTAACATATGACAACTCAATTAAA*C Replace the italicized sequences with sequences targeting the dsODN that you used in your experiments.

dsODN_Enrich_Adaptor - GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA*G

Nextera Indexing Oligo design **Nextera_R1**: AATGATACGGCGACCACCGAGATCTACAC [i5] TCGTCGGCAGCGT*C **Nextera_R2**: CAAGCAGAAGACGGCATACGAGAT [i7] GTCTCGTGGGCTCG*G

You will need to replace the [i5] & [i7] with unique index barcodes. You can use the Hamming barcodes from <u>https://doi.org/10.1371/journal.pone.0036852</u>. Order the appropriate number of indexing oligos for your samples based on if you want to do combinatorial indexing (cheaper) or unique dual indexing (better with the patterned flowcells).

Note: When selecting index barcodes, make sure

 there is no collision with other barcodes that will be run on the same flowcell as your samples
 don't start with or have consecutive G nucleotides if the samples will be run on instruments that use two-color (NextSeq, NovaSeq) or one-color (iSeq) chemistry.

Safety warnings

NOTE:

The NGS library generated by this protocol is NOT plug-and-play compatible with the guideseq analysis package (<u>https://github.com/aryeelab/guideseq</u>).

We have made slight modifications to the guideseq scripts to process these libraries. The output will be the same figure (of off-target sites & their frequencies) as you get with the default package. I will add a comment to this section when the modified package is made available on Github.

Before start

Make sure that the genomic DNA is clean (260/230 & 260/280 > 1.8) and 400 ng of DNA is in a volume less than 26 ul. Measure DNA concentration by fluorometry (Picogreen or Qubit).

Adaptor formation

1

- Use 0.1x TE to prepare 100 μM stock of all the oligos.
- In a 0.2 ml PCR tube, add the following reagents, vortex well, and spin down. Place on the thermal cycler at \$ 95 °C for () 00:03:00 (heated lid).
- $\stackrel{\text{L}}{=}$ 15 µL Oligo TA_Adaptor_Top (100 uM)
- \blacksquare 15 µL Oligo TA_Adaptor_Bottom (100 uM)
- 👗 70 μL dH2O
- -----
- 👗 100 μL Total
- After incubation, terminate the incubation and let the heat block cool down to room temperature. Remove the tube and place it on the bench for 1 hr.
- The oligos will have annealed and formed the adaptor.

DNA fragmentation, end-repair, ligation

2

This section of the protocol is from the manual for NEB Ultra II FS kit - Catalog # E7805.

(Refer to <u>https://www.neb.com/-/media/catalog/datacards-or-manuals/manuale7805.pdf</u> : Section for Input > 100 ng for detailed protocol)

- Aliquot 400 ng of genomic DNA into a well of a 96-well plate and use 1x TE to bring the volume to $426 \mu L$.
- Add the NEBNext Ultra II FS buffer + enzyme mix to the DNA (follow protocol from the linked manual)
- Set up the following program on the thermal cycler § 75 °C heated lid

8	37 °C f	or 🜔 00:	10:00			
8	65 °C f	or 🜔 00:	30:00			
8	4 °C h	old.				
N	ote					
т	his shoul	d fragment	t the library to	have a distribution	between 300 - 700 b	р.
		Ū				
- /	Add the l	√EBNext L	Jltra II ligatio	n mix + enhancer	o the well. Add 🛽 🛓	2.5 μ L of th
■ / á	Add the l adaptor t	NEBNext L o the mixt	Jltra II ligatio ure. Mix well	n mix + enhancer I and incubate at	o the well. Add 📕	2.5 μL of th
■ / a	Add the l adaptor t	VEBNext L o the mixt 5:00 heate	Jltra II ligatio ure. Mix well d lid off • Po	n mix + enhancer t I and incubate at ost incubation, add	o the well. Add ∡ 20 °C for ∠ 28.5 µL of 0.1	2.5 μ L of th x TE and brin
• / 2	Add the l adaptor t () 00:1 volume to	NEBNext U o the mixt 5:00 heate > A 100 p	JItra II ligatio ure. Mix well d lid off . Po L .	n mix + enhancer f I and incubate at ost incubation, add	o the well. Add 20 °C for 28.5 µL of 0.1	2.5 μ L of th x TE and brin
• / a \ \	Add the l adaptor t OO:1 volume to	NEBNext L o the mixt 5:00 heate > 👗 100 µ	JItra II ligatio ure. Mix well d lid off . Po uL .	n mix + enhancer f I and incubate at ost incubation, add	o the well. Add 20 °C for 28.5 µL of 0.1	2.5 μ L of th x TE and brin
• / 2 () • F	Add the I adaptor t OO:1 volume to Perform came wit	NEBNext L o the mixt 5:00 heate >	JItra II ligatio ure. Mix well d lid off . Po uL . n-up of the li	n mix + enhancer t I and incubate at ost incubation, add igation mix using th	to the well. Add 20 °C for 28.5 μL of 0.1 Me sample purification	2.5 μ L of th x TE and brin on beads that
• / () • [() Use	Add the l adaptor t Olume to Perform came wit	NEBNext L o the mixt 5:00 heate >	JItra II ligatio ure. Mix well ed lid off · Po uL · n-up of the li	n mix + enhancer t I and incubate at ost incubation, add igation mix using th ead addition	to the well. Add 20 °C for 28.5 μL of 0.1 he sample purification	2.5 μ L of th x TE and brin
 A A	Add the l adaptor t Our to volume to Perform came wit	NEBNext L o the mixt 5:00 heate D A 100 p Dead clear h the kit. JL of bead	JItra II ligatio ure. Mix well ed lid off . Po uL . n-up of the li ds for 1st be	n mix + enhancer to I and incubate at ost incubation, add igation mix using th ead addition ad addition (to sele	to the well. Add 20 °C for 28.5 μL of 0.1 The sample purifications act for an insert size	2.5 μL of th x TE and brin on beads that
 , ,	Add the l adaptor t \bigcirc 00:1 volume to came wit \square 20 \square 10 µ	NEBNext L o the mixt 5:00 heate $D \triangleq 100 \text{ p}$ Dead clear h the kit. μ of beads 20 of beads	JItra II ligatio ure. Mix well ed lid off . Po uL . n-up of the li ids for 1st be s for 2nd bea	n mix + enhancer to I and incubate at ost incubation, add igation mix using th ead addition ad addition (to sele	to the well. Add \blacksquare 20 °C for 22 28.5 µL of 0.1 The sample purification ect for an insert size	2.5 µL of th x TE and brin on beads that

Enrichment PCR

3

Make 10 uM dilutions of the following primers.

dsODN_Enrich_Plus dsODN_Enrich_Minus dsODN_Enrich_Adaptor

For each sample set up the following PCRs in a 96-well plate.

PCR 1.1 - Plus_Strand_Enrichment

- 👗 7.5 μL Adaptor ligated DNA
- 🛓 12.5 μL Ultra II Q5 master mix
- \triangleq 2.5 µL dsODN_Enrich_Adaptor

PCR 1.2 - Minus_Strand_Enrichment

- \blacksquare 7.5 µL Adaptor ligated DNA
- \triangleq 12.5 µL Ultra II Q5 master mix
- \triangleq 2.5 µL dsODN_Enrich_Adaptor
- \triangleq 2.5 µL dsODN_Enrich_Minus

PCR program:

- \$ 98 °C OO:00:30 Initial denaturation
- ₿ 98 °C 🕚 00:00:10 Denaturation
- 70 °C Gradient -1 °C / cycle O0:00:30 Annealing
- ₿ 72 °C
 8 00:01:00 Extension

7 cycles

- **\$** 98 °C **(3)** 00:00:10 Denaturation
- I 63 °C O:00:30 Annealing

13 cycles

4 °C Hold

After end of PCR, use $4 1 \mu L$ of the PCR end-product for Picogreen / Qubit.

Use $_$ 2 µL to run the sample on a Tapestation (D5000 high-sensitivity) to check for library size.

Each sample library should be a unimodal distribution between 400 - 1300 bp. All libraries should have an average size distribution within 15% across all samples.

Indexing PCR

4

Make 10 uM dilutions of the Nextera_R1 & Nextera_R2 primers.

For each sample, mix

Set up the following PCR:

Д	10 μL Ultra II Q5 ma	aster mix
Д	1 μL Nextera_R1	

- Δ 1 µL Nextera_R2
- ▲ 10 ng Template
- \blacksquare 0 µL dH20 As required
- -----

👗 20 μL Total

PCR Program:

- 98 °C OO:00:30 Initial Denaturation
- ₿ 65 °C 🚯 00:00:30 Annealing
- 10 cycles
- 🖁 4 °C Hold

After end of PCR, use $4 1 \mu L$ of the PCR end-product for Picogreen / Qubit.

Library pooling, QC, Sequencing

- 5
- Pool samples by equal mass (assuming the library size distribution for the samples are similar).
- Do a 1.2x SPRI bead clean-up. Elute in Δ 30 μL 0.1x TE
- Check concentration of the pool by Picogreen/Qubit and quantify library using Kapa Illumina Library quantification kit. Dilute the pool to appropriate molarity required for the sequencing instrument.
- Load the pool on the sequencer and run with 15% PhiX spike-in for base diversity (works on MiSeq, should work with other Illumina 4-color instruments. Might need more PhiX for NextSeq.)