Oct 14, 2019

Growth curve analysis

DOI

dx.doi.org/10.17504/protocols.io.77jhrkn

Sebastiaan Kuiper¹

¹Wageningen University

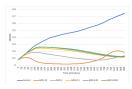
iGEM Wageningen 2019

Alba Balletbó

DOI: dx.doi.org/10.17504/protocols.io.77jhrkn

Protocol Citation: Sebastiaan Kuiper 2019. Growth curve analysis. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.77jhrkn</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited


Protocol status: Working We use this protocol and it's working

Created: October 14, 2019

Last Modified: October 14, 2019

Protocol Integer ID: 28619

Keywords: Growth curve analyses, Bacteriophages, Defense mechanisms, CRISPR, CRISPR-Cas, Cas9, Cpf1, Cas12a

Abstract

To observe the potential of defense mechanisms of either native or synthetic systems in *Escherichia coli* (and more) when incubated with a bacteriophage stock.

Materials

MATERIALS

8 96-well plate, flat bottom, tissue culture treated, black wall with clear bottom **Fisher** Scientific Catalog #3904

🔀 Microplate Reader Synergy Mx

STEP MATERIALS

8 96-well plate, flat bottom, tissue culture treated, black wall with clear bottom **Fisher** Scientific Catalog #3904

Protocol materials

86-well plate, flat bottom, tissue culture treated, black wall with clear bottom Fisher Scientific Catalog #3904

X Microplate Reader Synergy Mx

86-well plate, flat bottom, tissue culture treated, black wall with clear bottom **Fisher** Scientific Catalog #3904

86-well plate, flat bottom, tissue culture treated, black wall with clear bottom **Fisher** Scientific Catalog #3904

Preparations

- 1 Media and bacteriophage stock solutions :
 - 1L Luria-Bertani (LB) media (with antibiotics)
 - Desired Bacteriophage stock solution in LB media (with known Plaque Forming Units (PFU) ml⁻¹)

2 Fill in plate reader protocol as follows:

- Set temperature: 37°C preheat before moving to next step
- Start kinetics: Runtime 15:00:00 (HH:MM:SS), Interval 0:04:00
- Shake: medium, 0:30 (MM:SS)
- Read: Absorbance Endpoint, Full Plate Wavelengths: 600 Read Speed: Normal, Delay: 100 msec
- End kinetics
- 3 Prepare overnight cultures of desired samples (with associated antibiotics).

Plate reader

4 Measure OD600 of overnight cultures and dilute cultures to an OD600 of 0.02

5 Load 📕 180 μL of diluted overnight culture into a

8 96-well plate, flat bottom, tissue culture treated, black wall with clear bottom **Fisher Scientific Catalog #**3904

Include a serie of LB (without bacteria) as a control and as zero point for the OD600 measurements!

- 6 Start plate reader protocol <u>≡⊃ go to step #2</u> and let the bacteria grow to an OD600 of 0.11.
- 7 Prepare Bacteriophage PFU dilutions (with associated antibiotics) for;

MOI 10^{1} : 4.0 x 10^{10} PFU mI⁻¹ MOI 10^{0} : 4.0 x 10^{9} PFU mI⁻¹ MOI 10^{-1} : 8.0 x 10^{8} PFU mI⁻¹ MOI 10^{-2} : 8.0 x 10^{7} PFU mI⁻¹ MOI 10^{-3} : 8.0 x 10^{6} PFU mI⁻¹

An OD600 of 0.10 correlates to 8.0×10^8 cells per ml.

The above concentrations are required when 20 μ l of bacteriophage dilution is added into 180 μ l of cell culture with an OD600 of 0.11 (1:10 dilution).

8 At the moment an OD600 of 0.11 is reached, the plate reader must be stopped and \square 20 µL of bacteriophage dilution* must be added to a final volume of \square 200 µL to both the samples and the LB controls.

* include as a control, a serie without bacteriophages and only LB media (with antibiotics)

9 Restart the plate reader protocol and measure over 15 hours the growth of the samples.