FR-Match is a supervised cell phenotype matching strategy for cluster-to-cluster cell transcriptome integration across scRNAseq experiments.

An R package and Shiny application are provided at https://github.com/JCVenterInstitute/FRmatch.

BEFORE START INSTRUCTIONS

Require R Shiny package.
Launch Shiny app

1. Interactively explore and match scRNAseq cell type clusters with the seamless Shiny app. The Shiny app may serve as a quick start demo with pre-loaded datasets.

Command

```r
runShiny()
```

Data preparation and exploration

2. Use the built-in data preparation function to create data objects with required and optional input data elements. Create data objects for experiment 1 (E1) and experiment 2 (E2)

Command

```r
dat_E1 <- make_data_object()
dat_E2 <- make_data_object()
```
2.1 View comparative cell cluster sizes.

Command

```r
plot_clusterSize(dat_E1, dat_E2)
```

2.2 View "barcode" plot for cluster of interest.

Command

```r
plot_cluster_by_markers(dat_E1, cluster.name = "cluster_of_interest")
```

---

Run main algorithm

3 Use wrapper function to perform bi-directional matching.

3.1 Map E1 to E2.

Command

```r
rst12 <- FRmatch(sce.query = dat_E1, sce.ref = dat_E2)
```
3.2 Map E2 to E1.

Command

rst21 <- FRmatch(sce.query = dat_E2, sce.ref = dat_E1)

Combine and plot matching results

4 Combine the bi-directional matching results and plot.

Command

plot_bi_FRmatch(rst12, rst21)

Additional plots

5 Some optional plotting functions to help studying the matching results.

5.1 Plot one-directional matching results.

Command

plot_FRmatch(rst12)
Plot one-directional matching p-values.

Command

```r
plot_FRmatch(rst12, type = "padj")
```

5.2 Minimum spanning tree (MST) plot. MST can be plotted by turning on the plot option in the test function.

Command

```r
FR.test(samp1, samp2, plot.MST = TRUE)
```