

Jan 23, 2025

Flow cytometry measurements of lipid peroxidation with C11-Bodipy 581/591

DOI

dx.doi.org/10.17504/protocols.io.dm6gp92x1vzp/v1

Laura Mahoney Sanchez¹

¹UCL / The Francis Crick Institute

Laura Mahoney

UCL / The Francis Crick Institute

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

[Create free account](#)

OPEN ACCESS

DOI: <https://dx.doi.org/10.17504/protocols.io.dm6gp92x1vzp/v1>

Protocol Citation: Laura Mahoney Sanchez 2025. Flow cytometry measurements of lipid peroxidation with C11-Bodipy 581/591. [protocols.io https://dx.doi.org/10.17504/protocols.io.dm6gp92x1vzp/v1](https://dx.doi.org/10.17504/protocols.io.dm6gp92x1vzp/v1)

License: This is an open access protocol distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 23, 2025

Last Modified: January 23, 2025

Protocol Integer ID: 118961

Keywords: flow cytometry, Lipid peroxidation, flow cytometry measurements of lipid peroxidation, neurons for lipid peroxidation measurement, lipid peroxidation measurement, lipid peroxidation, flow cytometry measurement, flow cytometry, staining ipsc

Abstract

Protocol for staining iPSC-derived neurons for lipid peroxidation measurements using Live/Dead and C11-Bodipy 581/591 dyes, via flow cytometry

Materials

	A	B	C
	BODIPY 581/591 C11	Thermo Fisher Scientific	Cat#D3861
	LIVE/DEAD Blue	Thermi Fisher Scientific	Cat#L23105
	Accuse	StemCell Technologies	Cat#07922, 07920
	PBS, pH 7,4	ThermoFisher	Cat# 10010023

Troubleshooting

Cell treatment

- 1 Treat iPSC-derived neurons plated in 24-well plates with $\text{300-400 } \mu\text{L}$ of RSL3 in normal culture media for 3 to 5 hours

Cell staining with Live Dead Blue and C11-Bodipy 581-591

1h 10m

- 2 Remove the media from the wells and transfer into 1.5ml eppendorf tubes, in order to collect dead cells. 10m
- 3 Add $\text{300 } \mu\text{L}$ of pre-warmed accutase to each well and return plate to the incubator for $00:10:00$ to $00:15:00$ incubation at 37°C 15m
- 4 Pipette accutase up and down (carefully not to make bubbles), in order to dissociate the cells into a single cell suspension, and transfer the cells into the appropriate 1.5ml eppendorf tubes. 5m
- 5 Centrifuge cells at $300 \times g$, 20°C , $00:05:00$ 5m
- 6 Aspirate the supernatant without disturbing the pellet.
- 7 Resuspend the cell pellet with $100 \mu\text{L}$ of Live/Dead Blue (Cat#L23105) diluted in PBS: $0.5 \mu\text{L}$ per 1 mL of PBS (Note: concentration to be determined for each cell model). 5m
- 8 Place cells in a 37°C incubator for $00:15:00$ 15m
- 9 Remove cells from incubator and add $100 \mu\text{L}$ of C11-Bodipy 2x concentrated to the cells, so the final concentration is $2 \text{ micromolar } (\mu\text{M})$

10 Place cells in a 37 °C incubator for 00:15:00

15m

11 Remove samples from the incubator and place in ice. Sample is ready to take to Flow cytometer

Data acquisition

12 Adjust gates in order to acquire FITC and PE Texas Red in the live, single cell population. Acquire data from at least 10,000 single live cells.

To report lipid peroxidation, the ratio of oxidised C11-Bodipy (em: 488nm) over non-oxidised C11-bodipy (em:568nm) was measured and normalised to control population.