

Oct 07, 2020

In 1 collection

DOI

dx.doi.org/10.17504/protocols.io.bbmgik3w

Elisa Barbieri¹, Connor Hill^{1,2}, Alessandro Gardini¹

¹The Wistar Institute; ²The University of Pennsylvania

Elisa Barbieri

University of Edinburgh

DOI: dx.doi.org/10.17504/protocols.io.bbmgik3w

Protocol Citation: Elisa Barbieri, Connor Hill, Alessandro Gardini 2020. fastGRO. protocols.io

https://dx.doi.org/10.17504/protocols.io.bbmgik3w

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 22, 2020

Last Modified: October 11, 2020

Protocol Integer ID: 32136

Materials

MATERIALS

- **X** Chloroform
- **S** Isopropanol
- **XX** PBS
- NEBNext Ultra II Directional RNA Library Prep Kit for Illumina 24 rxns New England Biolabs Catalog #E7760S
- **☒** 0.5M EDTA **Catalog** #AM92606
- 2 mL Eppendorf
- **S** Glycerol
- RNA Clean & Concentrator-5 Kit Zymo Research Catalog #R1015
- Corning® 15 ml Centrifuge Tubes Corning
- 🔯 M280 streptavidin beads Invitrogen Thermo Fisher
- SM NaCl Ambion Catalog #AM9760G
- 🔯 Capillary electrophoresis instrument (e.g. Agilent Tapestation 4200)
- X 1M MgCl2 solution Thermo Fisher Scientific Catalog #AM9530G
- 🔯 50ml Falcon tubes Corning Catalog #352070
- 🔯 Qubit RNA HS Assay Kit **Thermo Fisher Scientific Catalog** #Q32852
- X 1M Tris-HCI (pH 8.0) **Thermo Fisher Scientific Catalog #**15568025
- X Tween-20
- **Ethanol**
- X KCI 2M Catalog #AM9640G
- Sarkosyl Merck MilliporeSigma (Sigma-Aldrich) Catalog #L7414
- X 4-thiouridine (4sU) Merck MilliporeSigma (Sigma-Aldrich) Catalog #T4509
- X TRIzol™ LS Reagent Thermo Fisher Catalog #10296028
- X ATP Thermo Fisher Catalog #18330019
- CTP Thermo Fisher Catalog #18331017
- GTP Thermo Fisher Catalog #18332015
- 🔯 EZ-Link™ HPDP-Biotin, No-Weigh™ Format Thermo Fisher Catalog #A35390
- 🔀 SUPERase• In™ RNase Inhibitor (20 U/μL) Thermo Fisher Catalog #AM2696

- Qubit™ 3 Fluorometer Thermo Fisher Catalog #Q33216
- IGEPAL® CA-630 Merck MilliporeSigma (Sigma-Aldrich) Catalog #18896
- Solve Glycogen Merck MilliporeSigma (Sigma-Aldrich) Catalog #10901393001
- 2 1M DTT Merck MilliporeSigma (Sigma-Aldrich) Catalog #43816-10ML
- 2 1M Tris-HCl pH 7.5 Thermo Fisher Scientific Catalog #15567027
- 21115 Merck MilliporeSigma (Sigma-Aldrich) Catalog #21115
- X NN-Dimethylformamide Merck MilliporeSigma (Sigma-Aldrich) Catalog #227056-100ML
- **☎** 4-Thiouridine-5-Triphosphate (4-thio-UTP) **Catalog** #N-1025-1
- X RNA ScreenTape and Reagents Agilent Technologies
- Bioruptor USD-200 Diagenode

Before start

Prepare spike-in RNA or Nuclei

Prepare 50 mM of 4-thiouridine (4sU) in DEPC-treated water. Aliquot and store in the dark at -20 °C.

Incubate drosophila cells for 5 minutes with 50mM of 4sU in their growing medium. Wash cells with 1X PBS, lyse in Trizol reagent. Extract RNA, aliquot, snap-freeze in liquid nitrogen and store at -80 °C.

Can also prepare drosophila nuclei to control for the Nuclear run-on. Can be done using same nuclei extraction protocol (steps 1-9) and drosophila nuclei can be added to your sample at steps 8 or 12 to 5-10% of amount of nuclei from your sample.

Prepare buffers and solutions.

Swelling Buffer (SB) - Add 2 U/ml Superare-In before use.

- 10 mM Tris-HCL pH 7.5
- 2 mM MgCl₂
- 3 mM CaCl₂

Store at 4 °C.

Swelling Buffer + 10% Glycerol (GSB) - Add 2 U/ml Superare-In before use. Store at 4 °C.

Lysis Buffer (LyB) - Add 2 U/ml Superare-In before use.

- 10 mM Tris-HCL pH 7.5
- 2 mM MgCl₂
- 3 mM CaCl₂
- 10% Glycerol
- 1% Igepal

Store at 4 °C.

Freezing Buffer (FB) - Add 2 U/ml Superare-In before use.

- 40% glycerol
- 5 mM MgCl₂
- 0.1 mM EDTA
- 50 mM Tris-HCL pH8

Store at 4 °C.

1 mg/mL EZ-link HPDP Biotin

Resuspend 1 mg in 1 ml of DMF in polypropylene tubes, vortex and incubate at 36 °C for 30 min. Store at -20 °C.

10x Biotinylation Buffer

100 mM Tris pH 7.5

10 mM EDTA pH 8.0 Store at 4 °C.

Nuclei isolation

- 1 Harvest cells and wash in cold 1X PBS
- 2 Resuspend cells in 4 10 mL of ice-cold SB. Incubate for (5) 00:05:00 . Spin 😝 400 x g, 00:10:00 .
- 3 Remove supernatant and resuspend in 🚨 10 mL GSB

Note

Volume of GSB should be at least 5 times the volume of cell pellet

- 4 Vortex lightly while adding 4 10 mL of LyB
- 5 Incubate on ice for 00:05:00 Add \perp 25 mL of LyB and centrifuge \bigcirc 600 x g, 00:05:00 .
- 6 Flick to loosen pellet and resuspend in 4 25 mL of LyB.
- 7 Remove supernatant and resuspend in 4 10 mL of FB. Take \perp 10 μ L for cell count.
- 8 Centrifuge 900 x g, 00:06:00 and resuspend using wide-end pipette tips in FB to a concentration of 2×10⁷ nuclei per 10 μl of FB.
- 9 Nuclei can be stored at <a>\mathbb{4} -80 °C for months.

Nuclear Run On

10

Prepare fresh 2x Nuclear run-on buffer (NRO). (\perp 100 μ L /sample)

- 10 mM Tris-HCl ph8
- 5 mM MgCl₂
- 300 mM KCI
- 1 mM DTT
- 500 µM ATP
- 500 µM GTP
- 500 μM 4-thio-UTP
- 2 µM CTP
- 200 µ/ml Superase-in
- 1% Sarkosyl (N-Laurylsarcosine sodium salt solution)

Note

Per library, use 1.5-2 x10⁷ nuclei

- 11 Warm the NRO buffer at \$\mathbb{8}\$ 30 °C .
- 12 Thaw nuclei | On ice |.

Note

5-10% drosophila nuclei can be added to your sample as spike-in if not using 4S-U labelled drosophila RNA in step 26.

13 Mix \perp 100 μ L of thawed nuclei solution with \perp 100 μ L of 2xNRO buffer.

Pipette up and down 15 times using end-cut pipette tip.

14 Incubate 00:07:00 at 30 °C .

15

Add $\stackrel{\text{\em A}}{=}$ 600 μL Trizol LS. Vortex. Incubate 000:05:00 at 8 Room temperature.

Note

STOP POINT: Freeze with liquid nitrogen, and store at -80 °C

Total RNA precipitation

- 16 Add 4 160 µL of chloroform, shake vigorously by hand for 6 00:00:15
- 17 Incubate 00:02:00 at Room temperature .
- 18 Centrifuge at 12000 rpm, 4°C, 00:15:00 .
- 19 Transfer upper, aqueous phase into new 1.5 mL centrifuge tube.
- 20 Add 400 µL of isopropanol to precipitate RNA and incubate at Room temperature for 00:10:00 .

Note

Can add 1-2 ul of 2 µg/µL glycogen to allow for visualization of pellet with lower RNA concentrations.

- 21 Centrifuge at 12000 rpm, 4°C, 00:10:00 .
- 22 Wash RNA pellet using 4 1 mL of cold 75 % ethanol

Completely remove ethanol and air-dry pellet. Dissolve in $400 \, \mu L$ of nuclease-free water.

Dissolve iii Δ 100 μL of fluctease free water

24 Determine concentration by Nanodrop or Qubit.

RNA fragmentation

25 Transfer \perp 150 μ g of RNA to a 1.5 ml tube and add water up to \perp 500 μ L.

Note

Save 5 μ l of unfragmented RNA to be run on TapeStation as a control for fragmented RNA and to check quality of RNA.

- Add 5-10% of labelled spike-in RNA if using instead of drosophila nuclei.
- Fragment RNA using Bioruptor with the following settings using: 1 cycle: 30 sec / 30 sec ON / OFF at high settings.

Transfer fragmented RNA to 2 ml tube.

- Analyze fragmentation efficiency of fragmented versus unfragmented RNA on Agilent 2200 TapeStation.
- 30 Sonicated RNA can be snap-frozen in liquid nitrogen and stored at \$\security -80 \circ\$C

EZ-link HPDP-Biotinylation

31

Transfer Δ 150 μg of fragmented RNA in one 2 ml Eppendorf tube.

Note

Use only polypropylene tubes during biotinylation.

- 32 Incubate RNA at \$65 °C for 00:10:00 , then 50 On ice for 00:05:00 .
- Prepare Biotin-RNA mix in 2 ml tube. Follow the order:
 - up to 150 μg of fragmented RNA in Δ 500 μL
 - Δ 100 μL Biotinylation Buffer
 - 4 200 μL DMF
 - 4 200 µL EZ-link HPDP Biotin
- 34 Incubate in the dark at $$ 24 ^{\circ}C$ and \$ 800 rpm for \$ 02:00:00 .

Precipitation of biotinylated RNA

- Add appr. $\underline{\bot}$ 800 μL of chloroform to the RNA-biotin in the 2 mL phase-lock tube and mix by manually shaking the tube.
- 36
 Centrifuge at \$\mathbb{L}^* 4 \cdot C \quad \text{and } \frac{16000 \text{ x g}}{16000 \text{ x g}} \text{ \$\frac{1}{10000}\$ 00:05:00
- 37 Transfer upper phase into new tube (appr 1 mL).
- 38 Add 1/10 volume (100 μ l) of 5 M NaCl and mix.

Note

If needed at 1-2 μ L of 2 μ g/ μ L Glycogen to allow for visualization of pellet with lower RNA concentrations.

- 39 Add 1 volume (1 ml) of isopropanol and mix for 00:00:15 manually.
- 40 Centrifuge 3 16000 x g, 4°C, 00:05:00 .
- 41 Remove supernatant.
- 42 Wash pellet with 4 1 mL of ice-cold 75% ethanol. Centrifuge 10006 x g, 4°C, 00:30:00 .
- 43 Remove supernatant.
- 44

Spin quickly at 🖁 4 °C and remove remaining supernatant with 200 μl and 10 μl pipettes.

Note

Biotinylated RNA should NOT dry.

45 Resuspend RNA in \perp 100 μ L of nuclease-free water.

Note

Biotinylated RNA can be stored at 4 -80 °C.

Enrichment of biotinylated RNA

- 46 Prepare Wash Buffer (WB):
 - 100 mM Tris pH 7.5
 - 10 mM EDTA pH 8.0
 - 1M NaCl
 - 0.1% (vol/vol) Tween-20
- 47 Leave half volume of WB at \$\mathbb{8}\$ Room temperature and heat the other half at \$\mathbb{8}\$ 65 °C .
- 48 Prepare the M280 Streptavidin Dynabeads:
- 48.1 Take Δ 100 μ L of beads per sample.
- 48.2 Wash the beads twice with 2 volumes ($\underline{\, \bot \,}$ 200 μL per sample) of wash buffer.
- 48.3 Resuspend in 1 Volume (\triangle 100 μ L per sample) of wash buffer.

Note

Can also scale down to 100 μL if you have less than 150 μg and use 50uL of beads.

Incubate at $65 \,^{\circ}\text{C}$ for 00:10:00. Place on ice for 00:05:00.

- 51 Add \perp 100 μ L of prepared Invitrogen streptavidin beads to \perp 200 μ L of RNA-biotin.
- 52 Incubate at \$\mathbb{\cein} 4 \circ for \bigodeta 00:15:00 in rotation.
- 53 Transfer tubes to a magnetic rack. Remove supernatant. Do not disturb beads.
- 54 Wash at least 3 times with \perp 900 μ L of warm (\$\cdot\$ 65 °C) WB.
- 55 Wash at least 3 times with \triangle 900 μ L of room temperature WB.
- 56 Resuspend beads in in \perp 100 μ L of 100 mM DTT and incubate 00:05:00 .
- 57 Transfer tubes to the magnetic rack. Collect the 4-thio-labeled RNA in a new tube.
- 58 Repeat steps 57-58 and collect the eluted RNA in the same tube (4 200 µL total volume).

Purification of labelled RNA with RNA Clean and

- 59 Use buffers provided with the RNA Clean and Purification kit-5 (Zymo Research). Add ethanol to wash and pre-wash buffers and resuspend DNAse in water.
- 60 Add \perp 400 μ L of RNA Binding Buffer to each sample and mix.
- 61 Add \perp 600 μ L of ethanol (95-100%) and mix.

- 62 Transfer the sample to the Zymo-Spin IC Column in a Collection Tube and centrifuge for 00:00:30 . Discard the flow-through.
- 63 Add 400 µL of RNA Wash Buffer to the column and centrifuge for 16000 x q, 00:00:30 . Discard the flow-through.
- 64 For each sample to be treated, prepare DNase I reaction mix in an RNase-free tube. Mix well by gentle inversion:
 - Δ 5 μL DNase I
 - Δ 35 μL DNA Digestion Buffer
- 65 Add 🚨 40 μL reaction mix directly to the column matrix. Incubate at Room temperature for (5) 00:15:00 .
- 66 Add 400 µL RNA Prep Buffer to the column and centrifuge for 00:00:30. Discard the flow-through.
- 67 Add \perp 700 μ L RNA Wash Buffer to the column and centrifuge for $\langle \cdot \rangle$ 00:00:30 . Discard the flow-through.
- 68 Add 400 µL RNA Wash Buffer to the column and centrifuge for 00:02:00. Discard the flow-through.
- 69 Centrifuge for 600:01:00 at full speed to ensure complete removal of the wash buffer. Transfer the column carefully into an RNase-free tube.
- 70 Add 4 6 µL DNase/RNase-Free Water directly to the column matrix, incubate for (*) 00:01:00 and centrifuge for (*) 00:00:30
- 71 Measure concentration of labelled RNA by Qubit fluorometer.

72 Libraries can be prepared with NEBNext Ultra II Directional RNA Library Prep or other library prep kits.