

Nov 13, 2019

Extracellular vesicle isolation from bacterial cultures

DOI

dx.doi.org/10.17504/protocols.io.8fzhtp6

Steven Biller¹

¹Wellesley College

Extracellular Vesicles

Steven Biller

Wellesley College

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.8fzhtp6

Protocol Citation: Steven Biller 2019. Extracellular vesicle isolation from bacterial cultures. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.8fzhtp6

Manuscript citation:

Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW. Bacterial Vesicles in Marine Ecosystems. Science 2014; 343: 183–186.

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: October 19, 2019

Last Modified: November 13, 2019

Protocol Integer ID: 28889

Keywords: Extracellular vesicle, vesicle, EV, OMV

Abstract

Steps for isolating extracellular vesicles and other small particles from a bacterial culture

Culturing

Grow bacterial culture to mid/late exponential phase

Vesicle+Particle Isolation

2 Remove cells by filtration through a 0.2µm filter and collect the filtrate (<0.2µm fraction). Depending on the culture, the bulk cell mass can be first removed by gentle centrifugation (~10,000 xg or less) prior to filtration.

Equipment	
Whatman Polycap TC 0.2 μm capsule filter	NAME
capsule filter	TYPE
Whatman	BRAND
6717-9502	SKU

- 3 Concentrate < 0.2 µm, cell-free supernatant using a tangential flow filter (100 kDa cutoff). Try to keep feed pressure <10 psi. Try to get the final volume as low as possible.
- 4 Re-filter concentrated material through a 0.2 µm syringe filter. Pellet the vesicles in an ultracentrifuge at 100,000 xg, for at least 1 hr, at 10 C or lower.
- 5 A pellet will not necessarily be visible. Remove as much of the supernatant as possible. If desired, wash the vesicle pellet in the appropriate buffer (media, 1x PBS, etc) as needed for downstream application.

Vesicle+Particle Isolation

6 Resuspend final vesicle pellet in buffer. Store at -20 or -80 C.