

May 24, 2023

Expression and purification protocol of human PI3KC3-C1 (±mCherry)

Molecular Cell

DOI

dx.doi.org/10.17504/protocols.io.8epv59mz4g1b/v1

Dorotea Fracchiolla¹

¹Sascha Martens lab, University of Vienna, Max Perutz Labs - Vienna (AT)

Dorotea Fracchiolla

Sascha Martens lab, University of Vienna, Max Perutz Labs - ...

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.8epv59mz4g1b/v1

External link: https://doi.org/10.1016/j.molcel.2023.04.021

Protocol Citation: Dorotea Fracchiolla 2023. Expression and purification protocol of human PI3KC3-C1 (±mCherry).

protocols.io https://dx.doi.org/10.17504/protocols.io.8epv59mz4g1b/v1

Manuscript citation:

Thanh Ngoc Nguyen, Justyna Sawa-Makarska, Grace Khuu, Wai Kit Lam, Elias Adriaenssens, Dorotea Fracchiolla, Stephen Shoebridge, Daniel Bernklau, Benjamin Scott Padman, Marvin Skulsuppaisarn, Runa S J Lindblom, Sascha Martens, Michael Lazarou (2023) Unconventional initiation of PINK1/Parkin mitophagy by Optineurin. Molecular Cell doi: 10.1016/j.molcel.2023.04.021

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: May 30, 2022

Last Modified: May 31, 2024

Protocol Integer ID: 63453

Keywords: PI3KC3-C1, kinase, expression, Sf9, purification, autophagy, ASAPCRN, purification protocol of human pi3kc3, purification of the active autophagy, c1 kinase complex, active autophagy, specific human pi3kc3, human pi3kc3, purification, purification protocol

Abstract

This protocol describes the procedures for expression and purification of the active autophagy-specific human PI3KC3-C1 kinase complex.

Materials

Proteins' parameters

А	В	С	D
Addgene #	Protein	MW (kDa)	Epsilon (M-1cm- 1)
187988	GST-C3cs-mCherry- ATG14L	109	135110
187987	GST-C3cs-ATG14L	81,7	100730
187990	Vps15	155	159630
187989	Vps34	102	115630
187991	Beclin	52	54890
187992	GST-PI3KC3-C1	390,7	430880
187831	GST-mCherry-PI3KC3- C1	418	315250

Molecular Weights and Extinction coefficients of all subunits and their complexes.

Materials and Reagents

- Sf9 insect cells
- SF921 medium with antibiotics 100 IU/ml Penicillin and 100 µg/ml Streptomycin
- sterile cell culture hood
- 27°C shaker incubator
- sterile flasks and pipettes
- douncer 40 mL
- Virus coding for GST-C3-ATG14/Vps34/Vps15/BECN1 (SMC1326/SM014, Addgene) or GST-C3-mCherry-ATG14/Vps34/Vps15/BECN1 (SMC1327/SM015, Addgene). Note: All the CDSs are codon-optimized for insect cell expression system (purchased from GenScript). The final poli-cystronic constructs were cloned via Golden Gate approach by the Vienna BioCenter Core Facilities (VBCF) Protech Facility.

Buffers for Protein Purification

LysisBuffer: 50mM Hepes pH=7.5, 300mM NaCl, 0.5% CHAPS(stock 10% CHAPS in water, filtered), Benzonase (1μl/50ml lysisbuffer), 1mM MgCl₂, 1mM DTT, 1xProteaseInhibitors/50ml lysis buffer (EDTA-freeCIPtablet) + 300μl CIP (Sigma).

Wash Buffer I: 50mM HepespH=7.5, 300mM NaCl, 0.5% CHAPS,1mM DTT;

Wash Buffer II: 50mM HepespH=7.5, 500mM NaCl, 1mM DTT; Wash Buffer III: 50mM HepespH=7.5, 300mM NaCl, 1mM DTT; Gel Filtration Buffer: 25mM Hepes pH=7.5, 200mMNaCl, 1mMDTT.

Note: all purification buffers are filtered and degassed. Reducing agent (DTT, Dithiothreitol) is added after

degassing step.

Columns: 5 ml GSH beads, GE Healthcare or Pierce

- S6_10/300

Gels:10%SDS-PAGE Troubleshooting

Infection/expression/harvest

14m

14m

- 1 Infect ▲ 1 L culture of Sf9 cells growing in Sf921 medium with antibiotics
 Penicillin/Streptomycin at 1-1.5 mil/ml cells/volume at 99-100% viability in log phase with
 Virus 1 (V1), volume according to viral titer. Baculovirus is obtained by transfection of Sf9
 cells with policystronic constructs coding for the (GST±mCherry)-PI3KC3-C1 complex
- 2 Monitor infection and harvest cells when viability goes to 97-98%.

Note

Always check reporter gene fluorescence under the microscope to monitor the viral infection: when all alive cells are brightly fluorescent and only few dead -> harvest!

- To harvest spin down the culture at 4000 rpm, 4°C, 00:14:00 in a Sorvall RC6+ centrifuge (Thermo Scientific).
- 4 Pour off the supernatant without disturbing the cell pellet.
- 5 Gently wash the pellet 1x in cold PBS buffer on ice.
- 6 Centrifuge again and remove PBS.
- 7 Flash freeze cell pellet in liquid nitrogen and store at \$\mathbb{8} -80 \cdot \mathbb{C}\$ until purification.

Protein purification

All steps are to be carried on ice or at 4 °C.

Re-suspend the cell pellet corresponding to 1 L culture in 50 mL ice cold Lysis buffer; gently stir at 4 °C avoiding bubbling until pellet dissolves.

- 9 Mechanically lyse the cells passing them through a pre-cooled 40ml vol. douncer repeating for 3x: 10x pestle A followed by 10x pestle B.
- 10 Clear the lysate by spinning it at 25000 rpm in a Ti45 Rotor for 00:45:00 at 4 °C using Beckman centrifuge.
- 11 In the meanwhile, wash 4 3-5 mL mL slurry GSH beads stored in 20% Ethanol (Pierce or Glutathione Sepharose 4B) with milliQ water and finally equilibrate them in cold **WBI**. Spin beads at ₩ 4000 rpm, 4°C, 00:03:00 , brake=2 in a 5810R centrifuge (Eppendorf).
- 12 Allow lysate incubation with beads for 60 01:00:00 4 4 °C , gently rolling the tube.
- 13 Wash beads 2x with a fixed volume of WBI.

Note

Each wash can be performed by gently inverting the tube a few times at 4 °C -> spin at **4**000 rpm for **6**00:03:00 .

- 14 Collect sample for "sup WI" and "beads WBI".
- 15 Wash beads 2x in WBII. Collect sample for "sup WII" and "beads WBII".
- 16 Wash beads 2x in WBIII. Collect sample for "sup WIII" and "beads WBIII".
- 17 Check all fractions on a 10% SDS-gel stained with Coomassie Brilliant Blue (see attached pdf below for example gel).
- 18 Collect sample for gel electrophoresis before cleavage.

45m

3m

1h

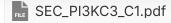
- 19 Incubate beads Overnight gently rolling at 4 °C with C3 protease to cleave off the GST-tag.
- 3m

10m

- The following day, collect sample after cleavage and run samples on gel to confirm cleavage (see attached pdf below).
- Spin down beads and collect the supernatant containing cleaved/eluted protein. Filter elution through a 0.2μm filter syringe to remove beads and concentrate down to

 Δ 0.5 mL using a 30kDa cut-off Amicon filter.

Note


Centrifugation steps are kept short 00:05:00 to avoid protein local concentration/aggregation on the filter. Gently pipette the sample to resuspend the protein between centrifugation steps.

- Spin down the sample in a table top centrifuge for 00:10:00 at 4 °C to pellet eventual aggregates, collect supernatant and inject 0.5 mL sample onto a S6_10/300 Gel Filtration column pre-equilibrated in Gel Filtration Buffer at 4 °C.
- After the run, check fractions containing the protein of interest on gel and pool them.

 Concentrate down to reach the desired concentration, flash freeze in liquid nitrogen and store at -80 °C until use.

Note

GSTPI3KC3_C1 purification_2020.0...