Enzyme linked immunosorbent assay for investigating the binding of chemically prepared protein-LAG (SpLAG) to immunoglobulins.

Angel A Justiz-Vaillant¹, Norma McFarlane-Anderson²

¹University of the West Indies St. Augustine; ²University of West Indies. Mona Campus

ABSTRACT

This SpLAG ELISA can be used to detect specific antibodies in various animal species including human, goat, donkey, mouse, rat, dog, cow, horse, ostrich, bantam hen, rabbit, chicken, monkey, pig, hamster, and many wild and zoo animals species [1].


PROTOCOL CITATION

Angel A Justiz-Vaillant, Norma McFarlane-Anderson 2020. Enzyme linked immunosorbent assay for investigating the binding of chemically prepared protein-LAG (SpLAG) to immunoglobulins. protocols.io https://dx.doi.org/10.17504/protocols.io.bjprkmm6

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

1 This ELISA is used to study the interaction of protein-LAG (SpLAG) with different immunoglobulin preparations.

2 The 96 well microtitre plate is coated overnight at 4°C with 2 µg/µl per well of SpL, SpA and SpG in carbonate-bicarbonate buffer pH 9.6.
3 Then plate is treated with bovine serum albumin solution and washed 4X with PBS-Tween.

4 50 µl of animal serum (1 mg/ml) is added and incubated for 1h at room temperature and the microplate is rewashed 4X with PBS-Tween.

5 Then 50 µl of peroxidase-labeled SpLAG conjugate diluted 1:3000 in PBS-non-fat milk is added to each well and incubated for 1h at RT. The plate is washed 4X with PBS-Tween.

6 50 µl of 4 mg/ml o-phenylenediamine solution (OPD) is added and the plate is incubated 15 minutes at RT in the dark.

7 The reaction is stopped with 50 µl of 3M H2SO4 solution.

8 The plate is visually assessed for the development of colour and read in a microplate reader at 492 nm.

9 A cut-off point should be calculated as the mean of the optical density of negative controls x 3. The higher the OD value the higher will be the affinity of SLpAG to immunoglobulin G.