Sep 02, 2020

C Electroporation Protocol

Forked from Electroporation Protocol

DOI dx.doi.org/10.17504/protocols.io.bkpukvnw

Ken Christensen¹ ¹Brigham Young University

> Ken Christensen Brigham Young University

DOI: dx.doi.org/10.17504/protocols.io.bkpukvnw

External link: https://www.neb.com/protocols/2012/06/21/making-your-own-electrocompetent-cells

Protocol Citation: Ken Christensen 2020. Electroporation Protocol. protocols.io <u>https://dx.doi.org/10.17504/protocols.io.bkpukvnw</u>

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development We are still developing and optimizing this protocol

Created: September 02, 2020

Last Modified: September 02, 2020

Protocol Integer ID: 41428

Abstract

This protocol may be used with electrocompetent cells prepared by you according to this protocol.

Guidelines

Appropriate Antibiotics for Your Application

Antibiotics for Plasmid selection

Antibiotic	Working Concentration
Ampicillin	100 μg/ml
Carbenicillin	100 μg/ml
Chloramphenicol	33 μg/ml
Kanamycin	30 μg/ml
Streptomycin	25 μg/ml
Tetracycline	15 μg/ml

Electroporation Protocol

The electroporation protocol will vary depending on the strain so this protocol may need to be optimized. For control electroporation dilute pUC19 to 10 $pg/\mu l$ with Milli-Q water.

Calculation:

If the culture was diluted 1000-fold when plated, the total cfu per ml is 1000 times the number of colonies counted. The cfu is divided by the amount of pUC19 (10 pg per ml)

cfu/ µg = (colonies counted*1000) / (0.00001 µg pUC19)

Safety warnings

• The electroporation protocol will vary depending on the strain so this protocol may need to be optimized.

Before start

For control electroporation dilute pUC19 to 10 pg/µl with Milli-Q water.

- 1 Turn on electroporator and set to 1.7-2.5 kv (optimize for strain), 200 ohms and 25 μF
- 2 Place recovery SOC in 37°C water bath
- 3 Pre-warm LB-antibiotic plates at 37°C
- Thaw cells on ice for 10 min or use freshly made cells
 00:10:00
- 5 Place appropriate number of microcentrifuge tubes and 1 mm-electroporation cuvettes on ice
- 6 Flick the tube containing cells a few times to mix and add **25 μl** of competent cells to the microcentrifuge tube

🗕 25 μL

7 Add **1 μI** of a 100 pg/μl to 1 ng/μl DNA solution (in DI water) to the cells in the microcentrifuge tube

🗕 1 μL

- 8 Transfer the DNA-cell mixture to the cold cuvette, tap on countertop 2X, wipe water from exterior of cuvette and place in the electroporation module and press pulse (**you don't hold the button down**)
- 9 Immediately add **975 μl** of 37°C SOC, mix by pipetting up and down once and transfer to a microcentrifuge tube, 5 ml culture tube, or 15 ml centrifuge tube.

👗 975 μL

- 10 Place in the shaker/incubator at 37°C incubator for 1 h
- 11 Make appropriate dilutions

Note

When using 100 pg - 1 ng of DNA, make three dilutions: Dilute 1 μ l of cells into 990 μ l SOC and plate 100 μ l. (10000-fold dilution) Dilute 10 μ l of cells into 990 μ l SOC and plate 100 μ l. (1000-fold dilution) Dilute 100 μ l of cells into 900 μ l SOC and plate 100 μ l. (100-fold dilution) 12 Incubate overnight at 37°C