DNA/RNA Radiolabeling Protocol

Liz O'Brien¹, Connor Tsuchida²

¹University of California, Berkeley

The Center for Genome Editing and Recording

Meredith Triplet

ATTACHMENTS

Radiolabeling_CasX_DNA_substrates.pdf

DOI

dx.doi.org/10.17504/protocols.io.8dshs6e

PROTOCOL CITATION

dx.doi.org/10.17504/protocols.io.8dshs6e

KEYWORDS

Radiolabeling, DNA, RNA, CasX, TS, NTS

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

GUIDELINES

CasX TS/NTS with non-hydrolysable spacers:

TS:

5'-CGCTAGCTACG

MW: 15664.2 g/mol
Concentration: X μM
Safety warnings:

* = phosphothioate, **bold letters** = PAM, *italic letters* = spacer

For 10 pmol of TS: X µl of stock

NTS:

MW: 15749.3 g/mol
Concentration: X µM

* = phosphothioate, **bold letters** = PAM, *italic letters* = spacer

For 10 pmol of NTS: X µl of substrate

Labelling reaction setup:

TS:

XX µl DNA or RNA (10 pmoles)
2.5 µl 10x PNK buffer
0.5 µl PNK enzyme
1.5 µl P32-gamma-ATP
XX mL dH2O (DEPC for labeling RNA) to 25 µl

NTS:

XX µl DNA or RNA (10 pmoles)
2.5 µl 10x PNK buffer
0.5 µl PNK enzyme
1.5 µl P32-gamma-ATP
XX mL dH2O (DEPC for labeling RNA) to 25 µl

Materials

<table>
<thead>
<tr>
<th>NAME</th>
<th>CATALOG #</th>
<th>VENDOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 Polynucleotide Kinase (3' phosphatase minus) - 200 units</td>
<td>M0236S</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>10X T4 PNK Reaction Buffer</td>
<td></td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>ATP [γ-32P]- 3000Ci/mmol 10mCi/ml Lead 100 µCi (P32-gamma-ATP)</td>
<td>NEG002A100UC</td>
<td>Perkin Elmer</td>
</tr>
<tr>
<td>HiTrap Desalting columns with Sephadex G-25 resin</td>
<td>29048684</td>
<td>Ge Life Sciences</td>
</tr>
</tbody>
</table>

Safety warnings:

Please see SDS (Safety Data Sheet) for hazards and safety warnings.

1. Set up labeling reaction:

<table>
<thead>
<tr>
<th>µl</th>
<th>DNA or RNA (10 pmoles)</th>
<th>10x PNK buffer</th>
<th>PNK enzyme</th>
<th>P32-gamma-ATP</th>
<th>dH2O (DEPC for labeling RNA) to 25 µl</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Mix the DNA, buffer, enzyme, and H₂O at the bench, and then add the DNA/enzyme mixture to ATP-filled tubes in a radioactive use area.

2. Incubate at \(37 \, ^\circ\mathrm{C}\) for \(00:30:00\).

3. Heat inactivate the PNK at \(65 \, ^\circ\mathrm{C}\) for \(00:20:00\).

4. Prepare G25 columns (from GE, green box): vortex thoroughly, twist cap \(\frac{1}{4}\) turn, snap off bottom, spin for \(00:01:00\) at \(3000 \, \text{rpm}\) to get rid of liquid.

5. Add \(50 \, \mu\text{l}\) H₂O to a labeled eppendorf tube, place G25 column in it.

6. Add \(25 \, \mu\text{l}\) H₂O to each labeling reaction after heat inactivation is done.

7. Apply entire reaction (now 50 \(\mu\text{l}\) total) to G25 column resin.

8. Spin for \(00:02:00\) at \(3000 \, \text{rpm}\).

9. Since 50 \(\mu\text{l}\) H₂O were in bottom of tube and you add your 50 \(\mu\text{l}\) reaction, you should end with up to 100 \(\mu\text{l}\) of \(100 \, \text{Nanomolar (nM)}\) labeled DNA/RNA.

10. Measure \(1 \, \mu\text{l}\) of each reaction with the black rad counter on shelf to get cpm readings.