

Nov 04, 2024

ONA Library Prep optimized for low DNA inputs with MGIEasy Fast FS DNA Library Prep Set

DOI

dx.doi.org/10.17504/protocols.io.x54v9reo4v3e/v1

Qianyue Ji¹, Guoqiang Mai², Xiaohan Wang¹, Shanshan Liu³, Mo Han¹

¹BGI Research; ²China National GeneBank; ³MGI Tech

Qianyue Ji

BGI

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.x54v9reo4v3e/v1

Protocol Citation: Qianyue Ji, Guoqiang Mai, Xiaohan Wang, Shanshan Liu, Mo Han 2024. DNA Library Prep optimized for low DNA inputs with MGIEasy Fast FS DNA Library Prep Set. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.x54v9reo4v3e/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: October 26, 2024

Last Modified: November 04, 2024

Protocol Integer ID: 110970

Keywords: mgieasy fast fs dna library prep set, fs dna library prep set, dna library prep, dna library preparation, duration of dna library preparation, suitable for microbial sequencing, low dna input, metagenomic, gdna, microbial sequencing, genomic dna, dna, special library for dnbseqtm, library prep time, mgi, library prep, library prep set, sequencer, library preparation, mgi tech, special library

Abstract

The MGIEasy Fast FS Library Prep Set(1000006987, MGI Tech) is designed to convert genomic DNA (gDNA) into a special library for DNBSEQTM sequencers and combines the fragmentation, end-repair and add A into one step, to simplify the preparation process and significantly shorten the duration of DNA library preparation, reducing the library prep time in 2 hours.

This library prep set provides to be optimized for low DNA inputs, suitable for microbial sequencing, metagenomics sequencing, WGS.

Materials

Materials

MGIEasy Dual Barcode Circularization Kit (Cat. No.: 1000020570)

Qubit ssDNA Assay Kit

MGIEasy Fast FS Library Prep Set(1000006987, MGI Tech)

Supplies:

- Pipette tips (assorted volumes)
- 5ml round-bottom polystyrene tubes, PCR tube, centrifuge tube

Equipment:

- Qubit Fluorometer
- Vortex
- Micropipettes, various volumes
- Microcentrifuge
- Thermocycler
- Magnetic rack

Troubleshooting

Preparation

- 1 Reagent preparation
- 1.1 Prepare the 1x Elute Enhancer according to the following table. Mix it by vortexing, and centrifuge briefly. Store at Room temperature before using. The shelf life of the 1x Elute Enhancer is 7 days.

Reagent	Volume
20x Elute Enhancer	1 μL
Nuclease- Free Water	19 μL
Total	20 μL

1x Elute Enhancer

1.2 Prepare the En-TE according to the following table. Mix it by vortexing, and centrifuge briefly. Store at 4 °C before using. The shelf life of the En-TE is 60 days.

1	
•	/
1	ገ
w	-10

Reagent	Volume
1x Elute Enhancer	3 μL
TE Buffer	1497 μL
Total	1500 μL

En-TE

1.3 Prepare the En-Beads according to the following table. Mix it by vortexing, and centrifuge briefly. Store at 4 °C before using. The shelf life of the En-Beads is 60 days.

Reagent	Volume
1x Elute Enhancer	10 μL
DNA Clean Beads	990 μL

Reagent	Volume
Total	1000 μL

En-Beads

2 Samples Preparation

2.1 Fragmentation

The extent of fragmentation (size distribution of DNA fragments) is controlled by time and temperature. Therefore, ensure the accuracy of time and temperature during the reaction. Mix the reagents before use and store the remaining reagents **immediately** after use.

2.2 Normalize gDNA.

Refer to the following table. Based on the sample concentration, transfer the appropriate gDNA (recommended 1 ng - 1000 ng) to a new 0.2 mL PCR tube. Add TE Buffer (\bigcirc 8.0) to make a total volume of $45 \,\mu$ L . Place the normalized gDNA \bigcirc On ice .

Components	Volume
TE Buffer (pH 8.0)	45 - X μL
gDNA (1 ng - 1000 ng)	Χ μL
Total	45 μL

Normalization of gDNA dissolved in TE (pH 8.0)

It is recommended that the normalization buffer should be the same as DNA elution buffer.

3 Enzyme Preparation

3.1 Mix the Fast FS Enzyme II by inverting 10 times and flicking the bottom of the tube(s) gently. Ensure that no residual reagent is left at the bottom each time. Centrifuge briefly, and place it On ice until use.

8

DO NOT vortex the Fast FS Enzyme II. Insufficient mixing will affect the fragmentation process.

- 3.2 According to the desired reaction number, prepare the fragmentation mixture in a 1.5 mL centrifuge tube | I On ice | . Vortex it 3 times (🚫 00:00:03 | each), centrifuge briefly, and place 🖁 On ice .
- 3s
- 3.3 Add \perp 15 µL of fragmentation mixture to each sample tube from step 2.2(\perp 45 µL). Vortex it 3 times (00:00:03 each), centrifuge briefly, and place \ On ice .

3s

3.4 Place the tube(s) into the thermocycler. Skip the first step (4 °C Hold) to start the reaction.

Temperature	Time
70 °C Heated lid	On
4 °C	Hold
30 ℃	10 ng for 18 min; <1ng for 22 min
65 ℃	15 min
4 °C	Hold

Fragmentation reaction conditions (Volume: 60 µL)

3.5 After the reaction, centrifuge the tube(s) briefly and immediately proceed to the next step.

DO NOT STOP AT THIS STEP.

Cleanup of fragmentation product

- 4 Single size selection, the peak size of the single size product is approximately 500 bp -750 bp.
- 4.1 Check the volume of the fragmentation product. If the volume is less than 60 μL, add En-TE to make a total volume of \triangle 60 μ L .
- 4.2 Mix the En-Beads thoroughly. Add 🚨 48 μL of En-Beads to each sample tube. Mix with a vortexer until all beads are suspended.
- 4.3 Incubate at | Room temperature | for | 00:05:00 |

5m

- - 4.4 Centrifuge the tube(s) briefly and place on the magnetic rack for 00:05:00 until the liquid is clear. Carefully remove and discard all the supernatant. If liquid remains on the tube wall, centrifuge the tube(s) briefly and place it on the magnetic rack for separation. Remove all liquid by using a low-volume pipette.
- **a**

5m

Remove the tube(s) from the magnetic rack and add $45 \,\mu$ L of En-TE to elute the DNA. Mix with a vortexer until all beads are suspended and centrifuge briefly. **DO NOT STOP AT THIS STEP.**

Adapter ligation

- 5 Adapter ligation
- 5.1 The UDB Adapter is a universal adapter sequence and does not contain Barcode sequences.

 Mix the reagents before using and store the remaining reagents immediately after the remaining reagents.
- Mix the reagents before using and store the remaining reagents immediately after use.
- 5.2 Adapter ligation

Dilute the UDB Adapter with TE Buffer (👍 8.0) based on gDNA input.

gDNA input (N ng)	Dilution of UDB Adapter	Volume after dilution
10	5 x	5 μL
<1	50 x	5 μL

Recommended adapter usage and dilutions for different amounts of gDNA input

5.3 Add \perp 5 μ L of UDB Adapter to the corresponding sample tube . Vortex it 3 times (\bigcirc 00:00:03 each), centrifuge briefly, and place \parallel On ice .

3s

According to the desired reaction number, prepare the adapter ligation mixture in a 1.5 mL centrifuge tube On ice. Vortex it 6 times (00:00:03 each), centrifuge briefly, and place On ice.

30m 3s

Reagent	Volume per reaction
Fast Ligation Buffer	23 μL
Ad Ligase	5 μL
Ligation Enhancer	2 μL
Total	30 μL

Adapter ligation mixture

It is recommended to prepare the adapter ligation mixture while waiting for cleanup of fragmentation product. Place it & On ice after preparation, and use it within

(:) 00:30:00 .

5.5 Slowly pipette 4 30 µL adapter ligation mixture to each sample tube. Vortex it 6 times (

3s

00:00:03 each), centrifuge briefly, and place \(\mathbb{\mathbb{G}} \) On ice \(\mathbb{N} \).

The adapter ligation mixture is highly viscous. Pipette slowly and carefully.

5.6 Place the PCR tube(s) into the thermocycler. Run the program with the following conditions.

Temperature	Time
30 °C Heated lid	On
25 ℃	10 min
4 ℃	Hold

Adapter ligation reaction conditions (Volume: 80 µL)

5.7 When the program is completed, centrifuge the PCR tube(s) briefly and place

On ice

DO NOT STOP AT THIS STEP.

Cleanup of adapter-ligated product

6 Cleanup of adapter-ligated product

- 6.1 Add \angle 22 μ L of En-TE to each sample tube.
- 6.3 Incubate the sample tube(s) at $$\mathbb{E}$$ Room temperature for \mathfrak{S} 00:05:00 .
- 6.4 © 00:05:00 Centrifuge the sample tube(s) briefly and place on the magnetic rack for 00:05:00 until the liquid is clear. Carefully remove and discard all the supernatant. If some liquid remains on the tube wall, centrifuge the tube briefly and place it on the magnetic rack for separation. Remove all liquid by using a low-volume pipette.
- 6.6 Repeat step 6.5. Try to remove all liquid from the tube. If some liquid remains on the tube wall, centrifuge the tube briefly and place it on the magnetic rack for separation. Remove all liquid by using a low-volume pipette.
- 6.7 Keep the tube(s) on the magnetic rack. Open the tube cap and air-dry the beads at

 Room temperature until no wetness or glossiness is visible on the beads' surface.

 There should be no visible cracking on the surface of the beads.
- 6.9 Incubate the tube(s) at $$\mathbb{I}$$ Room temperature for \mathfrak{S} 00:05:00 .
- 6.10 Centrifuge the tube(s) briefly and place on the magnetic rack for \bigcirc 00:05:00 until the liquid is clear. Carefully transfer \triangle 19 μ L of supernatant to a new 0.2 mL PCR tube.
 - 7 After cleanup, the adapter-ligated product(s) can be stored at \$\selline{\mathbb{L}} \cdot -20 \cdot \mathbb{C}\$.

5m

5m

5m

15m

8

30s

PCR

- 8 PCR Preparation
- 8.1 Mix the reagents before using and store the remaining reagents immediately after use. Barcodes are in the UDB PCR Primer Mix.

Reagent	Requirement
PCR Enzyme Mix	Thaw at RT: mix by vortexing; centrifuge briefly; place on ice
UDB PCR Primer Mix	Thaw at RT; mix by vortexing; centrifuge briefly; place at RT

Preparing the reagents

- 8.2 Add \triangle 25 μ L PCR Enzyme Mix to each sample tube.
- 8.3 Add 👃 6 μL of the corresponding UDB PCR Primer Mix . Vortex 3 times (👏 00:00:03 3s each) and centrifuge briefly to collect the solution at the bottom of the tube.

Reagent	Volume per reaction
Adapter-ligated product	19 μL
PCR Enzyme Mix	25 μL
Corresponding UDB PCR Primer Mix	6 μL
Total	50 μL

PCR mixture

- 9 PCR running
- 9.1 Place the PCR tube(s) into the thermocycler. Run the program with the following conditions.

Temperature	Time	Cycles
105 °C Heated lid	On	-
95 ℃	3 min	1
98 ℃	20 sec	10 ng for 8cycles: 1ng for 11cycles; 0.1ng for 13cycles
60 ℃	15 sec	
72 ℃	30 sec	
72 ℃	10 min	1
4 ℃	Hold	-

PCR cycles required to yield 300 ng of libraries

The number of PCR cycles should be strictly controlled.

9.2 When the program is completed, centrifuge the tube(s) briefly.

Cleanup of PCR product

- 10 Cleanup of PCR product
- 10.1 Mix the En-Beads thoroughly. Add \perp 38 μ L of En-Beads to each sample tube. Mix with a vortexer until all beads are suspended.
- 10.2 Incubate the sample tube(s) at Room temperature for 00:05:00 .

5m

10.3 Centrifuge the sample tube(s) briefly and place on the magnetic rack for 2 to 5 min until the liquid is clear. Carefully remove and discard all the supernatant. If some liquid remains on the tube wall, centrifuge the tube briefly and place it on the magnetic rack for separation. Remove all liquid by using a low-volume pipette.

30s

- 10.5 Repeat step 10.4. Try to remove all liquid from the tube. If some liquid remains on the tube wall, centrifuge the tube briefly and place it on the magnetic rack for separation.Remove all liquid by using a low-volume pipette.
- 8
- 10.6 Keep the tube(s) on the magnetic rack. Open the tube cap and air-dry the beads at room temperature until no wetness or glossiness is visible on the beads' surface. There should be no visible cracking on the surface of the beads.
- 10.8 Incubate the tube(s) at Room temperature for 00:05:00.

5m

10.9 Centrifuge the tube(s) briefly and place on the magnetic rack for \bigcirc 00:05:00 until the liquid is clear. Carefully transfer \square 30 μ L of supernatant to a new 0.2 mL PCR tube.

5m

Denaturation and single-stranded circularization

20m 30s

- 12 Combined with MGIEasy Dual Barcode Circularization Kit (Cat. No.: 1000020570) for ssCir preparation and further for DNB preparation.

 Denaturation
- Based on the PCR products concentration, add $\stackrel{\square}{\bot}$ 300 ng of PCR products into a new 0.2 mL PCR tube. If the volume is less than $\stackrel{\square}{\bot}$ 48 μ L , add TE Buffer to make a total volume.
- 12.2 Place the PCR tube(s) into the thermocycler. Run the program with the following conditions.

Z

Temperature	Time
100 °C Heated lid	On
95 ℃	3 min
4 °C	10 min

Denaturation reaction conditions (Volume: 48 µL)

12.3 After the reaction, centrifuge the tube briefly and place \ On ice \.

8

- 13 Single-stranded circularization
- According to the desired reaction number, prepare the circularization reaction mixture in a new 0.2 mL PCR tube On ice. Vortex it 3 times (00:00:03 each), centrifuge briefly, and place On ice.

3	S

Reagent	Volume per reaction
Dual Barcode Splint Buffer	11.6 μL
DNA Rapid Ligase	0.5 μL
Total	12.1 μL

Circularization reaction mixture

13.2 Add 12.1 μL of circularization reaction mixture to each sample tube. Vortex it 3 times (200:00:03 each), centrifuge briefly, and place 100 On ice.

3s

13.3 Place the PCR tube(s) into the thermocycler. Run the program with the following conditions.

Temperature	Time
42 ℃ Heated lid	On
37 ℃	10 min
4 ℃	Hold

Single-stranded DNA circularization reaction conditions (Volume: $60~\mu L$)

When the program is completed, place the PCR tube(s) On ice, centrifuge briefly, and immediately proceed to the next step.

- 14 Digestion
- 14.1 According to the desired reaction number, prepare the digestion mixture in a 0.2 mL PCR tube On ice. Vortex it 3 times (00:00:03 each), centrifuge briefly, and place On ice
- 14.2 Add $\perp 4 \mu$ of digestion mixture to each sample tube. Vortex it 3 times (3s ⊙ 00:00:03 each), centrifuge briefly, and then place S on ice.
- 14.3 Place the PCR tube(s) into the thermocycler. Run the program with the following conditions.

Temperature	Time
42 °C Heated lid	On
37 ℃	10 min
4 °C	Hold

Digestion reaction conditions (Volume: 64 µL)

- 14.4 When the program is completed, centrifuge the tube briefly and immediately add \perp 7.5 μ L of Digestion Stop Buffer to each sample tube. Vortex it 3 times (6) 00:00:03 each), centrifuge briefly, and place \(\mathbb{G} \) On ice \(\mathbb{O} \).
- 15 Cleanup of digestion product
- 15.1 Mix the DNA Clean Beads thoroughly. Add \perp 130 μ L of DNA Clean Beads to each sample tube. Mix with a vortexer until all beads are suspended.
- 15.2 Incubate at Room temperature for 00:05:00.

5m

3s

3s

宮

16.1

(ssDNA,

15.3 Centrifuge the tube(s) briefly and place on the magnetic rack for (2) 00:05:00 until the 5m liquid is clear. Carefully remove and discard the supernatant. 15.4 While keeping the tube(s) on the magnetic rack, add 4 160 µL of 80% ethanol to each 30s tube to wash the beads and tube wall. Wait for 00:00:30 . Carefully remove and discard the supernatant. 15.5 Repeat step 15.4. Try to remove all liquid from the tube. If some liquid remains on the tube wall, centrifuge the tube briefly and place it on the magnetic rack for separation. Remove all liquid by using a low-volume pipette. 15.6 Keep the tube(s) on the magnetic rack. Open the tube cap and air-dry the beads at room temperature until no wetness or glossiness is visible on the beads' surface. There should be no visible cracking on the surface of the beads. 15.7 Remove the tube(s) from the magnetic rack and add \perp 25 μ L of TE Buffer to elute the DNA. Mix with a vortexer until all beads are suspended. 15.8 Incubate at Room temperature for 00:05:00. 5m 15.9 Centrifuge the tube briefly and place on the magnetic rack for 00:05:00 until the 5m liquid is clear. Carefully transfer 🚨 24 μL of supernatant to a new 1.5 mL centrifuge tube. 16 QC of digestion product

Quantify the ssCir with Qubit ssDNA Assay Kit. The final Enzymatic Digestion products

ng) / input products of PCR (dsDNA, 300 ng) should be $\geq 7\%$.