DNA extraction from gram negative bacteria for ONT MinION sequencing

Louise Judd

1University of Melbourne

High molecular weight DNA extraction from all kingdoms

Tech. support email: See@each.protocol

Louise Judd

University of Melbourne

ABSTRACT

This is the protocol I have developed to generate High'ish' Molecular Weight gDNA from gram negative bacterial species to use for ONT MinION sequencing.

This protocol was initially developed for the high throughput extraction of bacterial gDNA for Illumina short read sequencing. To perform our high throughput work we utilise Beckman Coulter Biomek liquid handling robots and the Beckman Coulter gDNA extraction kit Genfind v2. This kit utilises magnetic particles and is relatively gentle. We have found that gDNA extracted using this method has a high'ish' molecular weight. On a fragment analyser the gDNA is typically a clean single peak >60 kb (the limits of the fragment analyser). ONT MinION libraries generated with this gDNA typically have N50s in excess of 20 kb and the data is suitable for the assembly automated of almost bacterial genomes we have tested to date. This protocol will not give you the ultra long 'whale' reads that others have reported but it is a good compromise between HMW DNA, speed and ease of use and capacity to scale up to high throughput.

NOTE

We have found that gDNA extracted using this method often have underrepresentation of smaller plasmids (<20kbp). We are not sure exactly why this happens but possible reason are; the circular replicons do not bind as readily to the magnetic particles and so are excluded from the extraction or the plasmids remain circule and so are not available to adapter ligation in the library prep. I will upload an additional protocol for gDNA extraaction that focuses on enrichment of plasmid sequences.

PROTOCOL CITATION: Louise Judd 2018. DNA extraction from gram negative bacteria for ONT MinION sequencing. protocols.io https://dx.doi.org/10.17504/protocols.io.p5mdq46

MANUSCRIPT CITATION:

1. Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL,

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

protocols.io | https://dx.doi.org/10.17504/protocols.io.p5mdq46
Protocol status: Working

We use this protocol in our group and it is working. I am still in the process of tweaking the write up of the protocol but a number of people have asked me to put this up so hear it is.

Created: May 15, 2018

Last Modified: May 15, 2018

PROTOCOL integer ID:
12173

Bacterial culturing

1. Inoculate single bacterial colony into 2 ml of appropriate growth media
2. Incubate overnight 37°C with shaking
3. Transfer 1.5 ml of overnight culture into microfuge tube
4. Pellet bacteria
5. Remove supernatant

NOTE
At this stage bacterial pellet can be stored at -80°C for gDNA extraction at a later date with no compromise to extraction

Bacterial Lysis

2. Dissolve lyophilised RNase A American Bioanalytical #AB14043 in 50% glycerol and 10 mM Tris (pH 8.0) to a final concentration of 100 mg/ml
 (stock can be stored at -20°C for future use)
2. Dissolve lyophilised Genfind proteinase K in Genfind proteinase K buffer to a final concentration of 96 mg/ml
 (stock can be stored at -20°C for future use)
3. For each bacterial isolate to be extracted make a lysis master mix containing 400 ul Genfind lysis buffer, 9 ul Genfind proteinase K and 1 ul RNase A (see step 1)
4. Add 400 ul of the lysis master mix to each bacterial pellet
5. Gently tip mix 10 times to ensure the bacterial pellet is well resuspended
6. Incubate at 37°C for 30 minutes
7. Proceed to DNA extraction
1) Invert the Genfind binding buffer 20 times to ensure complete resuspension of the magnetic particles.
2) Add 300 ul of the Genfind binding buffer to each of the samples and gently tip mix 10 times, avoid generating bubbles.

The magnetic particles will most likely clump together at this stage due to the high concentration of DNA in the sample.
3) Incubate samples at room temperature for 5 minutes.
4) Place the sample on a magnetic rack for 5 minutes or until solution completely clears.
5) With the tubes on the magnet remove the supernatant avoiding the magnetic particles.
6) Remove samples from the magnet.
7) Add 800 ul of Genfind wash buffer 1 to each of the samples.
8) Gently tip mix each sample 10 times.

The idea is to try and resuspend the magnetic beads but this will most likely not be possible as they will clump together.

I try to make sure the clumps of beads move in and out of the pipette tip with each mix.
9) Place the sample on a magnetic rack for 5 minutes or until solution completely clears.
10) Repeat steps 7-10 for a total of two washes with Genfind wash buffer 1.
11) Add 500 ul of Genfind wash buffer 2 to each of the samples.
12) Gently tip mix each sample 10 times.

The idea is to try and resuspend the magnetic beads but this will most likely not be possible as they will clump together.

I try to make sure the clumps of beads move in and out of the pipette tip with each mix.
13) Place the sample on a magnetic rack for 5 minutes or until solution completely clears.
14) Repeat steps 11-13 for a total of two washes with Genfind wash buffer 2.
15) Briefly centrifuge samples to bring all liquid to the bottom of the tube.
16) Place the sample on a magnetic rack for 5 minutes or until solution completely clears.
17) Remove all traces of wash buffer 2 with a pipette, but do not allow beads to fully dry out.
18) Add 50-200 ul of 10 mM Tris pH 8.0 to each sample.

(I usually start with 100 ul but it will depend on the growth dynamics of your bacteria)
19) Remove samples from the magnet.
20) Gently tip mix each sample 10 times and incubate at 37°C for 5 minutes then tip mix again.

To ensure elution of DNA off the particles it is crucial that the magnetic particles are completely resuspended.

If it is not possible to entirle resuspend particles then add more 10 mM Tris.
21) Place the sample on a magnetic rack for 5 minutes or until solution completely clears.
22) Transfer supernatant to a clean microfuge tube. Try to avoid carryover of magnetic particles into the supernatant.

NOTE
After extraction DNA should be stored at 4°C to minimise any damage. Storage at -20°C will result in ice crystal formation that will shear you DNA.
I try to do my DNA extractions on the same day as my library prep but have stored DNA at 4°C for a couple of weeks and still made successful libraries.

DNA QC

1) Visualise sample to estimate the molecular weight. We have a Fragment Analyzer and run a gDNA 1-60kbp gel.
 Once you have extracted gDNA from the same species a number of times it is possibly not necessary to run a "gel" with each subsequent extraction. However, I would run QC gels each time you tackle a new bacterial species

2) Quantify your sample with a fluorimeter or Qubit.

3) Analyse 1 µL in a UV spectrophotometer (e.g. Nanodrop).