

Jan 28, 2022

© DNA extraction from colonial tunicates

DOI

dx.doi.org/10.17504/protocols.io.b33sqqne

Marta Wawrzyniak¹, Simon Blanchoud¹

¹University of Fribourg

Blanchoud lab, UNIFR

Marta Wawrzyniak

University of Fribourg

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.b33sqqne

Protocol Citation: Marta Wawrzyniak, Simon Blanchoud 2022. DNA extraction from colonial tunicates. protocols.io https://dx.doi.org/10.17504/protocols.io.b33sqqne

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: January 20, 2022

Last Modified: January 28, 2022

Protocol Integer ID: 57170

Keywords: DNA extraction, colonial tunicates, ascidians, dna extraction from colonial tunicate, hotphenol dna extraction protocol, botrylloides diegensi, dna extraction, dna, colonial tunicate

Abstract

This protocol has been successfully used with *Botrylloides diegensis* and was adapted to our needs based on the HotPhenol DNA extraction protocol.

Guidelines

Change gloves frequently, particularly as the protocol progresses from crude extracts to more purified materials. Use sterile tubes. Perform all steps on ice and use RNAse-free and DNase-free water unless otherwise stated.

Materials

Heat bath setup at 70 C (If working with fresh samples: glass beads 0.1mm and eppendorf thermal shaker) phenol pH 8 (4 C)

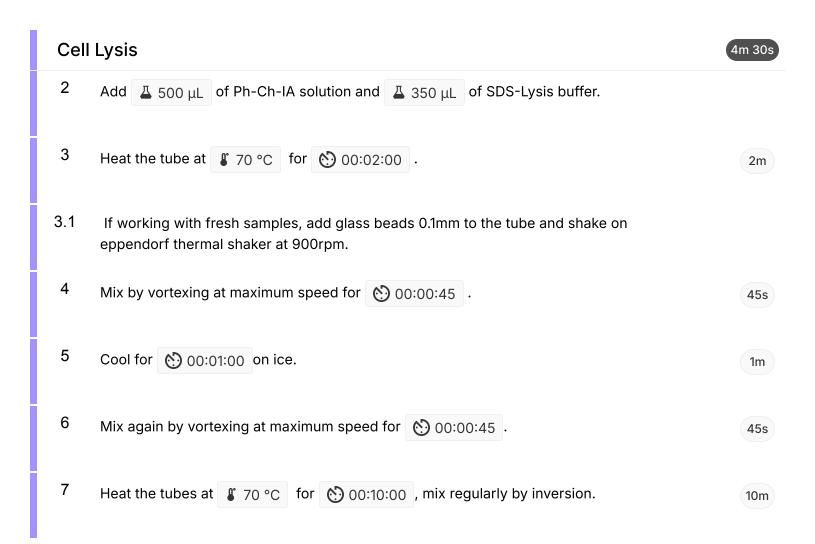
Ph-Ch-IA: phenol:chloroform:isoamyl alcohol (25:24:1, best prepared fresh)

Ch-IA: chloroform:isoamyl alcohol (24:1)

SDS-Lysis buffer: 10mL Lysis buffer, 4mL SDS 10%

Lysis buffer 50mL: 12.3g 3M Sodium acetate (pH 5.2), 7.3g 0.5M EDTA, Nuclease-free water

12.3g 3M sodium acetate in 50mL Nuclease-free water


80% Ethanol ultra pure water

Troubleshooting

- This protocol was developed to extract both RNA and DNA in parallel (See <u>RNA</u> <u>extraction from colonial tunicates</u>, steps 1-7) using the same samples. However it could be run directly on fresh samples (steps 1.1-1.4).
- 1.1 Clean the slide from which you will take the colony of your interest. See <u>Cleaning</u> <u>colonial ascidians</u>.
- 1.2 Isolate a cleaned colony composed of approx. 20 zooids.
- 1.3 Transfer to a tube and spin at maximum speed for 00:02:00.

1.4 Remove the excess water.

2m

- 7.1 If working with fresh samples, shake the tubes on eppendorf thermal shaker at 900rpm.
 - 8 Mix again by vortexing at maximum speed for 00:00:45.

45s

9 Cool for 00:01:00 on ice.

1m

Mix again by vortexing at maximum speed for 00:00:45.

45s

DNA extraction

3m Ì

11 Centrifuge at Room temperature at maximum speed for 00:03:00.

3m

- 12 Transfer 400μ L of the upper aqueous phase to a new tube.
- 13 Add \perp 400 μ L of Ph-CI-IA solution.

30s

Shake the tube by inversion for 00:00:30 .

3m

15 Centrifuge at maximum speed for 00:03:00 .

311

- 16 Transfer $\Delta 300 \mu L$ of the upper aqueous phase to a new tube.
- 17 Add $\perp 300 \,\mu L$ of Ph-CI-IA solution.
- Shake the tube by inversion for 00:00:30 .

30s

19 Centrifuge at maximum speed for 00:03:00.

3m

- 20 Transfer 4 200 µL of the upper aqueous phase to a new tube.
- 21 Add $\underline{\underline{A}}$ 200 μL of CI-IA solution.
- 22 Shake the tube by inversion for (5) 00:00:30 .
- Centrifuge at maximum speed for 00:03:00.
- Transfer aqueous phase to a new tube.

DNA precipitation

3h 30m

3h

20m

30s

3m

- 25 Add 2 volumes of [M] 100 % volume Ethanol (typically \perp 300-400 μ L).
- 26 Add 0.1 volume of [M] 3 Molarity (M) sodium acetate (typically Δ 15-20 μL).
- 27 Mix by inversion.
- 28 Incubate at \$\mathbb{\center} \cdot -20 \cdot \cdot \for \cdot 03:00:00 \cdot \cdot \cdot \cdot 03:00:00 \cdot \cdot \cdot \cdot \cdot \cdot 03:00:00 \cdot \cd
- Centrifuge at maximum speed for 00:20:00 at 4 oc .
- 30 Discard the supernatant.
- Add Δ 450 μL of cold [M] 80 % volume ethanol.

36

32 Centrifuge at maximum speed for 00:05:00 at Room temperature .

5m

5m

33 Discard the supernatant.

Discard the supernatant.

- 34 Add \perp 200 μ L of cold [M] 80 % volume ethanol.
- 35 Centrifuge at maximum speed for 00:05:00 at Room temperature.
- 37 Resuspend the pellet in ultra pure water (typically Δ 20-100 μ L).
- 38 Measure the DNA concentration using the NanoDrop.
- 39 Store at \$\mathbb{L} -20 \cdot \cdot \text{for short storage or at } \mathbb{L} -80 \cdot \cdot \text{for long storage.}