

May 23, 2023

Version 2

Obsalting of Peptides to Prepare for Mass Spectrometry Analysis V.2

DO

dx.doi.org/10.17504/protocols.io.6qpvr4n3ogmk/v2

James Considine¹, Ikram Isa¹, Alexandra Naba¹

¹University of Illinois Chicago

Human BioMolecular Atl...

The Matrisome Project

Alexandra Naba

University of Illinois Chicago

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.6qpvr4n3ogmk/v2

Protocol Citation: James Considine, Ikram Isa, Alexandra Naba 2023. Desalting of Peptides to Prepare for Mass Spectrometry Analysis. **protocols.io** https://dx.doi.org/10.17504/protocols.io.6qpvr4n3ogmk/v2 Version created by Alexandra Naba

License: This is an open access protocol distributed under the terms of the **Creative Commons Attribution License**, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working!

Created: May 18, 2023

Last Modified: May 23, 2023

Protocol Integer ID: 82035

Keywords: Peptides, Desalting, Proteomics, Mass Spectrometry, peptide sample, peptide, proteomic analysis, mass spectrometry analysis, formic acid, sample, trifluoroacetic acid

Abstract

Prior to proteomic analysis, peptide samples are desalted and eluted with freshly prepared 50% acetonitrile, 0.1% trifluoroacetic acid, followed by concentration in a vacuum concentrator. Peptides are then resuspended in freshly prepared 5% acetonitrile, 0.1% formic acid.

Note

- The last step can be conducted at a mass spectrometry facility according to their own preferred methods.
- After desalting, the concentration of the peptide solution can be measured by spectrophotometry.

Materials

Materials:

- X HPLC-grade water Thermo Fisher Scientific Catalog #51140
- X Trifluoro-acetic Acid Thermo Fisher Scientific Catalog #85183
- X Acetonitrile mass spectrometry grade Thermo Scientific Catalog #51101
- Sormic Acid Thermo Scientific Catalog #28905

5.

Equipment	
Peptide Desalting Spin Columns	NAME
Thermo Scientific	BRAND
89851	SKU
https://www.thermofisher.com/order/catalog/product/89851 ^{LINK}	

6.

Equipment	
Low Retention Tubes and Tips	NAME
Brand	BRAND
0000000	SKU

Note

• The maximum volume for spin columns is 300 uL. If columns ever become unpacked, repeat the step that caused this by reloading the flowthrough and spinning at the recommended speed.

Reagents

Table 1: Reagent Preparation

Table Reagent Preparation		
Reagents	Amount	
Priming buffer	100% Acetonitrile	
Washing buffer	0.1% TFA in HPLC $H_2^{}O$	
Elution buffer	50% solution with 0.1% TFA in HPLC-grade water	
Reconstitution buffer	5% solution with 0.1% Formic acid in HPLC-grade water	

Protocol materials

- X HPLC-grade water Thermo Fisher Scientific Catalog #51140
- Trifluoro-acetic Acid Thermo Fisher Scientific Catalog #85183
- Acetonitrile mass spectrometry grade Thermo Scientific Catalog #51101
- Sormic Acid Thermo Scientific Catalog #28905
- Pierce Quantitative Colorimetric Peptide Assay Thermo Fisher Scientific Catalog #23275

Troubleshooting

Column Preparation

4m

- 1 Column Preparation
- 1.1 Take a Pierce peptide desalting spin column and remove the white tip (do not remove the screw cap of the tube). Place in a 2mL tube and spin column at \bigcirc 5000 x g for

1m

- **©** 00:01:00 .
- Add \underline{A} 300 μ L of *acetonitrile*. Spin at $(55000 \times g)$ for 00:01:00 and discard flow-through.

1m

1.3 Repeat this step once

2m

Note

• Note that if columns ever become unpacked, repeat that step as the columns will not work properly if unpacked.

Sample Loading

2m

- 2 Sample Loading
- 2.1 Place the spin column in a new low-retention 2 mL tube labeled "flowthrough".
- 2.2 Load $\Delta 300~\mu L$ of peptide sample into the tube and spin at (5 3000 x g) for 00:01:00 .

1m

Note

 You can save the flow-through to ensure it does not contain any unbound peptides and that peptides are binding to the columns.

- 2.3 Based on the total sample volume, if:

 - 2.3b)Less than \triangle 300 μ L \rightarrow reload the flow-through.
- 2.4 Spin the sample at \$\infty\$ 3000 x g for \infty\$ 00:01:00 . Store "FT" at \$\infty\$ -80 °C for troubleshooting purpose.

Wash

- 3 Wash Sample
- 3.2 Repeat step 3.1 2 more times.

Note

• Note that if columns ever become unpacked, repeat that step as the columns will not work properly if unpacked.

Sample Elution

1m

1m

1m

2m

- 4 Elute Samples
- 4.1 Place the spin column in a new 2mL low-retention tube labeled with the sample name.

4.2 Load $\perp 300 \,\mu$ L of **0.1% TFA, 50% acetonitrile in HPLC-grade H₂0** . Spin at

1m

Note

- Note that if columns ever become unpacked, repeat that step as the columns will not work properly if unpacked.
- 4.3 Transfer the spin column to another 2mL-low retention tube and repeat the step.
- 4.4 Pool the two elution samples from 4.2 and 4.3. These are the desalted peptides.
- 4.5 Store at 4 -20 °C.

Lyophilization and Reconstitution

- 5 Lyophilization
- 5.1 To remove reagents incompatible with mass spectrometry place tubes in SpeedVac™ until completely dry.
- 5.2 Depending on the size of the peptide pellet, resuspend samples with 4 20 -75 µL of 0.1% formic acid, 5% acetonitrile in HPLC-grade H₂O.
- 5.3 Vortex until completely resuspended.
- 5.4 Peptide concentration can be measures using a spectrophotometer or using peptide concentration measurement kits such as:


```
Pierce Quantitative Colorimetric Peptide Assay Thermo Fisher

Scientific Catalog #82075
   Scientific Catalog #23275
```

Protocol references

This protocol was adapted from Pierce™ Peptide Desalting Spin Columns User Guide, Catalog Numbers 89851 and 89852: Thermo Fisher Pierce Peptide Desalting Spin Columns