Derivation of organoids from primary tumour tissue

Hazel Rogers¹, Laura Letchford¹, Sara Vieira¹, Maria Garcia-Casado¹, Mya Fekry-Troll¹, Charlotte Beaver¹, Rachel Nelson¹, Hayley Francies¹, Mathew Garnett¹

¹Wellcome Sanger Institute

ABSTRACT

This protocol describes the derivation of organoid models from primary tumour tissue. It has been developed by the organoid derivation team within the Cellular Generation and Phenotyping Group at the Wellcome Sanger Institute. We have used the process to derive organoids from colon, pancreas and oesophageal tumours. The team has extensive experience in organoid derivation and have successfully banked over 100 models.

DOI

dx.doi.org/10.17504/protocols.io.bfvnj5e

PROTOCOL CITATION

Hazel Rogers, Laura Letchford, Sara Vieira, Maria Garcia-Casado, Mya Fekry-Troll, Charlotte Beaver, Rachel Nelson, Hayley Francies, Mathew Garnett 2020. Derivation of organoids from primary tumour tissue. protocols.io

https://dx.doi.org/10.17504/protocols.io.bfvnj5e

KEYWORDS

Organoid, Cancer, Derivation

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

CREATED

May 01, 2020

LAST MODIFIED

Jul 07, 2020

PROTOCOL INTEGER ID

36494

PARENT PROTOCOLS

Part of collection

2020 Featured Protocols

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
GUIDELINES

General Information and tips
- The tissue samples we process are transported from clinical sites in Advanced DMEM-F12 containing primocin antibiotic (final concentration 100 µg/ml). Samples are shipped chilled at 4 °C.
- We use 5 ml Eppendorf tubes to help with sterility. However, if you do not have access to these tubes any alternative sterile tubes of appropriate volume can be used.
- We have experience of deriving organoid models from colon, oesophagus and pancreatic tumour tissue.
- We recommend using glass rather than plastic petri dishes for tissue dissection as tissue can get stuck in grooves cut into the plastic dish.
- Plate digested cells as close together as possible.
- Be very cautious at initial passages after derivation. Organoids can grow well for a few passages and then significantly drop off. We generally keep organoids in the same number of wells or reduce the area plated in if growth is slow or some cellular material has died.
- Not all derivations will be successful. Listed below are some common reasons we see for failure.

Trouble Shooting

<table>
<thead>
<tr>
<th>Reason</th>
<th>How do you know?</th>
<th>What does it look like?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lack of cells</td>
<td>Insufficient starting material. No/minimal organoid formation seen.</td>
<td></td>
</tr>
<tr>
<td>No organoid formation</td>
<td>Viable cells present but do not form organoids.</td>
<td></td>
</tr>
<tr>
<td>Unable to propagate</td>
<td>Organoids form but unable to expand.</td>
<td></td>
</tr>
<tr>
<td>Growth has dropped off</td>
<td>Organoids were present and expanding but have since stopped reforming.</td>
<td></td>
</tr>
<tr>
<td>Bacterial contamination</td>
<td>Media turns very yellow and probably also cloudy. Small bacteria can be seen under high magnification.</td>
<td></td>
</tr>
<tr>
<td>Fungal contamination</td>
<td>May manifest as very round, bright yellow dots within BME2 droplets or white colonies on top.</td>
<td>Media may turn yellow but can remain clear.</td>
</tr>
<tr>
<td>Mycoplasma contamination</td>
<td>Cannot be detected visually although organoid growth may be affected.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repeatedly test positive for mycoplasma.</td>
<td></td>
</tr>
<tr>
<td>Fibroblast contamination</td>
<td>Excessive fibroblast outgrowth takes over the culture.</td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Possible Solution</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>BME2 is setting too quickly whilst plating.</td>
<td>Try keeping your solution in a cooling rack whilst plating.</td>
<td></td>
</tr>
<tr>
<td>Cells plated too densely resulting in BME breaking up.</td>
<td>Harvest cells, BME2 and media in a tube. Pipette to break up BME2. Spin, then aspirate supernatant. If a lot of BME2 is left (grey haze above pellet) re-suspend in ice cold PBS, then repeat spin. If this does not work, re-suspend in TrypLE and incubate at 37°C for a few minutes before spinning. Re-suspend cell pellet in appropriate amount of BME2 and re-plate.</td>
<td></td>
</tr>
<tr>
<td>One well is contaminated but rest of plate looks normal.</td>
<td>Aspirate media from contaminated well. Add 2 ml chlorohexidine gluconate and leave for 30 min. Aspirate entire contents of well and wash out with PBS. Keep an eye on remaining wells for the next few days.</td>
<td></td>
</tr>
<tr>
<td>Culture is taken over by fibroblasts.</td>
<td>Use a P1000 pipette to harvest organoids and media in a tube and wash wells with PBS. Fibroblasts tend to attach to the surface of the culture plate so should be left behind when the organoids are harvested. Spin then aspirate supernatant. Re-suspend in TrypLE and continue with passaging protocol.</td>
<td></td>
</tr>
</tbody>
</table>

Citation: Hazel Rogers, Laura Letchford, Sara Vieira, Maria Garcia-Casado, Mya Fekry-Troll, Charlotte Beaver, Rachel Nelson, Hayley Francies, Mathew Garnett (07/07/2020). Derivation of organoids from primary tumour tissue. https://dx.doi.org/10.17504/protocols.io.bfvnjn5e

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
MATERIALS

Falcon 15 mL Polystyrene Conical Tube Fisher Catalog #352095

Penicillin Streptomycin Invitrogen - Thermo Catalog #15140 122

DPBS no calcium no magnesium Thermo Fisher Catalog #14190144

Collagenase, Type II, powder Thermo Fisher Catalog #17101015

Cultrex® Reduced Growth Factor Basement Membrane Matrix Type 2 (BME) Trevigen Catalog #3533-010-02

Falcon 50mL Conical Centrifuge Tubes Fisher Catalog #14-432-22

Costar 6-well Clear TC-treated Multiple Well Plates Bulk Packed Sterile Corning Catalog #3506

Eppendorf Tubes 5.0 Eppendorf Catalog #0030122321

Anumbra Glass Petri Dish 100x15mm Scientific Laboratory Supplies Ltd Catalog #PET1008

Surgical Scalpel Blade No. 21 Swann Morton Catalog #0507

Cell Strainers 100 μm pore size VWR international Ltd Catalog #732-2759

Pestle for Cell Strainer Sigma – Aldrich Catalog #Z742105

Primocin InvivoGen Catalog #ant-pm-1

Y-27632 dihydrochloride Sigma – Aldrich Catalog #Y0503

Equipment

- Sterile cell culture hood
- Centrifuge
- 1000 μl and 200 μl pipettes and tips
- Pipetteboy
- Stripettes
- 37°C waterbath
- 37°C humidified incubator (5% CO₂)
- Light microscope
- Tube rotator

SAFETY WARNINGS

For full safety information refer to individual COSHH and MSDS forms
- **Primocin** can cause possible respiratory and skin sensitisation.
- **Penicillin Streptomycin** can cause possible respiratory and skin sensitisation. May also damage fertility or the unborn child.
- **Rock inhibitor (Y-27632)** is harmful if swallowed, inhaled or splashed on skin.
- Organoids derived from **primary samples** may contain uncharacterised adventitious agents, including blood-borne viruses.

BEFORE STARTING

- Thaw BME2 aliquot overnight at $4 \, ^\circ C$ and dilute 4:1 with appropriate organoid media (tissue specific) to make an 80% stock
- Ensure cell culture plates have been stored overnight in $37 \, ^\circ C$ incubator
- Pre-warm organoid culture media to room temperature
- Prepare 100 mg/ml collagenase stock. Re-suspend 1 g collagenase II in 10 mL PBS. Aliquots can be stored at $-20 \, ^\circ C$ for up to one year.
- Prepare digestion buffer:

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Stock Concentration</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organoid Media</td>
<td>-</td>
<td>9.5 ml</td>
</tr>
<tr>
<td>Collagenase</td>
<td>100 mg/ml</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Primocin</td>
<td>50 mg/ml</td>
<td>0.02 ml</td>
</tr>
<tr>
<td>Penicillin Streptomycin</td>
<td>100X</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>Rock inhibitor (Y-27632)</td>
<td>(10 mM)</td>
<td>0.01 ml</td>
</tr>
</tbody>
</table>

Process Diagram

1. Transfer sample to a petri dish using a pipette or forceps
2. Add digestion buffer. Use scalpel to cut tissue to smaller pieces
3. Incubate 60-120 min at $37 \, ^\circ C$
4. Wash 3-5 times using 10 mL PBS
5. Discard the supernatant
6. Wash pellet with 30 mL PBS
7. Spin: 2 min at 800 g
8. Discard the supernatant
9. Re-suspend pellet in 80% BME2. Plate 200 µl/well in 10-15 µl drops
10. Spin: 2 min at 800 g
11. Place plate in incubator for 45-30 min while you make up media:
 - 10 µl of BME2
 - 2 µl of Primocin
 - 1 µl of ROCK
12. Add 1ml of media per well

Citation: Hazel Rogers, Laura Letchford, Sara Vieira, Maria Garcia-Casado, Mya Fekry-Troll, Charlotte Beaver, Rachel Nelson, Hayley Francies, Mathew Garnett (07/07/2020). Derivation of organoids from primary tumour tissue. https://dx.doi.org/10.17504/protocols.io.bfvnjn5e

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2 Pour or pipette tissue, and media sample has been transported in, into a glass petri dish.

![Alert] If tissue has unknown infection status, only open the container the sample has been transported in within a microbiological safety cabinet.

We recommend using glass rather than plastic petri dishes as tissue can get stuck in grooves cut into the plastic dish whilst cutting up the sample.

3 Aspirate as much media as possible. Add **10 mL** PBS to wash the tissue sample. Aspirate PBS and repeat wash at least two more times (we perform 3 washes for pancreas and oesophagus and 5 washes for colon).

After last wash make sure to aspirate as much PBS as possible to avoid diluting the digestion buffer.

If tissue is breaking up, making aspiration difficult without losing the sample, transfer tissue and media back to the **15 mL** tube and centrifuge (**800 x g** 2 min). Asiprate supernatant and re-suspend in PBS to wash. Repeat these steps for appropriate number of washes.

4 Add **10 mL** digestion buffer. Using a scalpel, cut sample into small pieces of approximately 1-2 mm in diameter.
5. Transfer tissue and digestion buffer to a 15 mL tube. Place sample in a tube rotator and incubate at 37 °C for 60-120 minutes.

6. Following incubation, assess tissue fragments under a microscope to confirm sufficient digestion. The sample should look cloudy to the eye and appear as single cells or small clumps under a microscope.

7. Transfer digested sample to a 50 mL tube through a 100 μm cell strainer. Use a pestle to pass any remaining tissue through the strainer. Wash the 15 mL tube with 10 mL PBS and add to the 50 mL tube through the cell strainer. Repeat the wash step.

8. Centrifuge at 800 x g for 2 minutes.
Aspirate supernatant and re-suspend pellet in 30 mL PBS. Repeat spin at 800 x g for 2 minutes.

When aspirating, you do not need to worry about getting too close to the pellet at this stage.

Aspirate supernatant and re-suspend pellet in 2.5 mL PBS. Transfer to a 5 mL tube (or 15 mL tube). Wash 50 mL tube with another 2.5 mL PBS and transfer to 5 mL tube. Repeat spin at 800 x g for 2 minutes.

Transferring to a smaller volume tube helps with re-suspension in a small volume of BME2 in the next step.

Aspirate as much supernatant as possible. Re-suspend cell pellet in appropriate amount 80% BME2 (200 µl per well of a 6 well plate).

BME2 must be dispensed as quickly as possible as it will begin to set at room temperature. A cool block could be used to help keep the temperature down while plating.

Volume of BME2 to re-suspend in must be determined from size of cell pellet. Aim to plate cells as close together as possible. If unsure re-suspend in a small volume. Pipette one or two 15 µl - 20 µl droplets and check under the microscope. If too dense increase BME2 volume.

Using a P200 pipette, dispense organoid/BME2 suspension as small 15 µl - 20 µl droplets into a 6 well plate (seed 200 µl per well).

Place in a 37 °C incubator (5% CO₂) for 15-30 minutes to allow BME2 to set.

Prepare media containing antibiotics and Y-27632 (rock inhibitor). Add volumes below per ml of appropriate culture media:

- 2 µl primocin
- 10 µl penicillin streptomycin

Citation: Hazel Rogers, Laura Letchford, Sara Vieira, Maria Garcia-Casado, Mya Fekry-Troll, Charlotte Beaver, Rachel Nelson, Hayley Francies, Mathew Garnett (07/07/2020). Derivation of organoids from primary tumour tissue. https://dx.doi.org/10.17504/protocols.io.bfvnjn5e

This is an open access protocol distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
15 Add 2 mL of appropriate prepared media per well of a 6 well plate.

16 Return to incubator. Media change twice a week until ready to passage. Keep in media containing antibiotics and Y-27632 until first passage.