
Oct 03, 2019 Version 6

Demultiplexing Nanopore reads with LAST V.6

In 2 collections

DOI

dx.doi.org/10.17504/protocols.io.7vmhn46

David A Eccles

Malaghan Institute of Medical Research �NZ�

David A Eccles
Malaghan Institute of Medical Research �NZ�

1

1

DOI: dx.doi.org/10.17504/protocols.io.7vmhn46

External link: https://doi.org/10.5281/zenodo.2535894

Protocol Citation: David A Eccles 2019. Demultiplexing Nanopore reads with LAST. protocols.io

https://dx.doi.org/10.17504/protocols.io.7vmhn46

Manuscript citation:

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: October 02, 2019

Last Modified: October 03, 2019

Protocol Integer ID: 28301

Keywords: demultiplexing, nanopore, high-throughput sequencing

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 1/9

https://dx.doi.org/10.17504/protocols.io.7vmhn46
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://dx.doi.org/10.17504/protocols.io.7vmhn46
https://doi.org/10.5281/zenodo.2535894
https://dx.doi.org/10.17504/protocols.io.7vmhn46
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

Abstract

This protocol is for a semi-manual method for read demultiplexing, as used after my presentation Sequencing

DNA with Linux Cores and Nanopores to work out the number of reads captured by different barcodes.

Input: reads as a FASTQ file, barcode sequences as a FASTA file

Output: reads split into single FASTQ files per target [barcode]

Note: barcode / adapter sequences are not trimmed by this protocol

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 2/9

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

1 Prepare a FASTA file containing barcode sequences (see attached FASTA file). To reduce

the chance of mismatched adapters, this should only contain the barcode sequences.

That restriction means this approach will not work for short reads, where the barcode

sequences are very likely to occur within sequences.

barcode_base.fa

2 Prepare the LAST index for the barcode file. Following Martin Frith's recommendation,

the '-uNEAR' seeding scheme is used to slightly increase sensitivity. This will generate

seven additional files of the form <index name>.XXX�

lastdb -uNEAR barcode_base.fa barcode_base.fa

3 Prepare a substitution matrix for barcode mapping. The default substitution matrix is

swayed too much by INDELs in the barcode sequences, so here's one that I've

developed using a combination of trial & error and last-train:

bc.mat

#last -Q 0
#last -a 10
#last -A 10
#last -b 5
#last -B 5
#last -S 1
score matrix (query letters = columns, reference letters =
rows):
 A C G T
A 4 -24 -9 -24
C -24 5 -24 -14
G -9 -24 7 -24
T -24 -14 -24 8

Generating Barcode Index

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 3/9

https://github.com/mcfrith/last-rna/blob/master/last-long-reads.md#option-1-prepare-a-genome-without-repeat-masking
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

This matrix has a moderate penalty for opening gaps (i.e. insertions and deletions), and a

lower penalty for inserting them. Insertions and deletions are considered to be equally

likely in the barcode region. It also has a moderate penalty for A/G transition variants,

and a higher penalty for C/T transition variants (but still lower than other substitution

penalties).

4 Combine all input reads into a single file

Note: I'm using the pipe viewer command pv to produce a progress indicator while the

command is running. If this command is not available, it can be replaced with cat with no

change in function (apart from not showing progess).

pv ../called_all/*.fastq | gzip > reads_all.fastq.gz

5 Use LAST, ignoring FASTQ quality scores for substitution ��Q 0�, using the pre-defined

substitution matrix to map the reads. In this example, it is distributed over 10 processing

threads ��P 10�. Here maf-convert is used to convert to a single line per match, cut

retains only the barcode and read IDs, and uniq is used to make sure that multiple same

barcodes per read (e.g. for reverse / complement barcodes at each end) will not produce

duplicates:

For a more stringent search, lastal can do an overlap match ��T 1) rather than the default

local match, which will make sure that only the ends of the barcode are matched

(hopefully the entire barcode) when demultiplexing. The downside is that this is more

likely to drop reads due to slight mismatches in the barcode portion of the read:

Stringency can also be altered by adjusting the query letters per random alignment

setting ��D <value>, 1e6 by default). Lowering this number will produce more matches, at

the expense of more false positive matches:

lastal -Q 0 -P10 -p bc.mat barcode_base.fa <(pv
reads_all.fastq.gz) | \
 maf-convert -n tab | cut -f 2,7 | sort | uniq | \
 gzip > barcode_assignments.txt.gz

lastal -T 1 -Q 0 -P10 -p bc.mat barcode_base.fa <(pv
reads_all.fastq.gz) | \
 maf-convert -n tab | cut -f 2,7 | sort | uniq | \
 gzip > barcode_assignments.txt.gz

Mapping Reads to Barcodes

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 4/9

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

The output of this command will be a gzipped tab-separated 2-column file with barcode

names in the first column, and read IDs in the second column.

lastal -D 1e5 -Q 0 -P10 -p bc.mat barcode_base.fa <(pv
reads_all.fastq.gz) | \
 maf-convert -n tab | cut -f 2,7 | sort | uniq | \
 gzip > barcode_assignments.txt.gz

6 For each discovered barcode, using the appropriate read category assignment file, find

the corresponding read IDs, then extract those IDs out of the read FASTQ file. This uses

one of my scripts, fastx-fetch.pl, to do this directly from a FASTQ file. The '-lengths'

command-line parameter also outputs sequence lengths for each read (see next step):

fastx-fetch.pl

Note: this demultiplexing code will only by default put reads into a barcode bin if they

have a single unique barcode sequence detected. Otherwise, they will be put into a

'BCchim' bin if multiple adapters are detected (i.e. a chimeric read), or a 'BCmiss' bin if

no adapters are detected. If these reads should be duplicated and put in one bin per

barcode, then the -chimeric option can be added to the command arguments:

mkdir -p demultiplexed
fastx-fetch.pl -lengths -demultiplex barcode_assignments.txt.gz \
 -prefix 'demultiplexed/reads' <(pv reads_all.fastq.gz) >
barcode_counts.txt

mkdir -p demultiplexed
fastx-fetch.pl -lengths -demultiplex barcode_assignments.txt.gz -
chimeric \
 -prefix 'demultiplexed/reads' <(pv reads_all.fastq.gz) >
barcode_counts.txt

Splitting Read File Per Barcode

[optional] Displaying Read Length Statistics

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 5/9

https://gitlab.com/gringer/bioinfscripts/blob/master/fastx-fetch.pl
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

7 The lengths output from the demultiplexing step can be fed into another one of my

scripts, length-plot.r, in order to display length-based QC plots:

length_plot.r

As output, this produces a multi-page PDF file, Sequence_curves.pdf. Here are some

examples of the plots that are produced:

1. Read Count Frequency Curve

2. Called Bases Frequency Curve

fastx-length demultiplexed/lengths_*.txt.gz

Read count frequency curve for �ve samples, showing a variety of different read length
distributions

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 6/9

https://gitlab.com/gringer/bioinfscripts/blob/master/length_plot.r
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

3. Called Bases Density Curve

4. Cumulative Sequenced Bases Curve

Called bases frequency curve for �ve samples, showing a variety of different read length
distributions

Sample-normalised called bases density curve for �ve samples, showing a variety of
different read length distributions

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 7/9

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

5. Digital Electrophoresis Plot (relative frequency)

5. Digital Electrophoresis Plot (sample-normalised)

Sample-normalised cumulative sequenced base curve for �ve samples, showing a variety
of different read length distributions

Relative digital electrophoresis plot for �ve samples, showing a variety of different read
length distributions

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 8/9

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

Sample-normalised digital electrophoresis plot for �ve samples, showing a variety of
different read length distributions

8 Following on from here, cDNA reads can be oriented in preparation for stranded

mapping:

Preparing Reads for Stranded Mapping

Downstream Workflows

protocols.io | https://dx.doi.org/10.17504/protocols.io.7vmhn46 October 3, 2019 9/9

https://dx.doi.org/10.17504/protocols.io.43qgymw
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.7vmhn46

