
Jul 02, 2019 Version 3

Demultiplexing Nanopore reads with LAST V.3

DOI

dx.doi.org/10.17504/protocols.io.42dgya6

David A Eccles

Malaghan Institute of Medical Research �NZ�

David A Eccles
Malaghan Institute of Medical Research �NZ�

1

1

DOI: dx.doi.org/10.17504/protocols.io.42dgya6

External link: https://doi.org/10.5281/zenodo.2535894

Protocol Citation: David A Eccles 2019. Demultiplexing Nanopore reads with LAST. protocols.io

https://dx.doi.org/10.17504/protocols.io.42dgya6

Manuscript citation:

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: In development

We are still developing and optimizing this protocol

Created: July 01, 2019

Last Modified: July 02, 2019

Protocol Integer ID: 25381

Keywords: demultiplexing, nanopore, high-throughput sequencing

protocols.io | https://dx.doi.org/10.17504/protocols.io.42dgya6 July 2, 2019 1/5

https://dx.doi.org/10.17504/protocols.io.42dgya6
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://www.protocols.io/researchers/david-eccles
https://dx.doi.org/10.17504/protocols.io.42dgya6
https://doi.org/10.5281/zenodo.2535894
https://dx.doi.org/10.17504/protocols.io.42dgya6
https://creativecommons.org/licenses/by/4.0/
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.42dgya6

Abstract

This protocol is for a semi-manual method for read demultiplexing, as used after my presentation Sequencing

DNA with Linux Cores and Nanopores to work out the number of reads captured by different barcodes.

Input: reads as a FASTQ file, barcode sequences as a FASTA file

Output: reads split into single FASTQ files per target [barcode]

Note: barcode / adapter sequences are not trimmed by this protocol

protocols.io | https://dx.doi.org/10.17504/protocols.io.42dgya6 July 2, 2019 2/5

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.42dgya6

1 Prepare a FASTA file containing barcode sequences (see attached FASTA file). To reduce

the chance of mismatched adapters, this should only contain the barcode sequences.

That restriction means this approach will not work for short reads, where the barcode

sequences are very likely to occur within sequences.

barcode_base.fa

2 Prepare the LAST index for the barcode file. This will generate seven additional files of

the form <index name>.XXX�

lastdb barcode_base.fa barcode_base.fa

3 Combine all input reads into a single file

Note: I'm using the pipe viewer command pv to produce a progress indicator while the

command is running. If this command is not available, it can be replaced with cat with no

change in function (apart from not showing progess).

pv ../called_all/*.fastq | gzip > reads_all.fastq.gz

4 Use LAST in FASTQ alignment mode ��Q 1) to map the reads. In this example, it is

distributed over 10 processing threads ��P 10�. Here maf-convert is used to convert to a

single line per match, cut retains only the barcode and read IDs, and uniq is used to

make sure that multiple same barcodes per read (e.g. for reverse / complement barcodes

at each end) will not produce duplicates:

For an extremely stringent search, the output of lastal can be piped through last-map-

probs, which will reduce the likelihood of a partial barcode match to other DNA

lastal -Q 1 -P10 barcode_base.fa <(pv reads_all.fastq.gz) | \
 maf-convert -n tab | cut -f 2,7 | uniq | \
 gzip > barcode_assignments.txt.gz

Generating Barcode Index

Mapping Reads to Barcodes

protocols.io | https://dx.doi.org/10.17504/protocols.io.42dgya6 July 2, 2019 3/5

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.42dgya6

sequences. The downside is that this is more likely to drop reads due to slight

mismatches in the barcode portion of the read:

The output of this command will be a gzipped tab-separated 2-column file with barcode

names in the first column, and read IDs in the second column.

lastal -Q 1 -P10 barcode_base.fa <(pv reads_all.fastq.gz) | last-
map-probs | \
 maf-convert -n tab | cut -f 2,7 | uniq | \
 gzip > barcode_assignments.txt.gz

5 Identify reads with unique barcode classes attached to each read. The sort command

sorts by the second field (read ID�, then uniq identifies duplicated lines when ignoring

the first field (barcode). Two uniq commands are used to allow for the possibility that a

sequence could be tailed by matching barcodes at both ends. The downside of this is

that it will also collapse chimeric reads with the same barcode. This uses 'uniq -u' to only

print the unique lines.

pv barcode_assignments.txt.gz | zcat | sort -k 2,2 | uniq | \
 uniq -f 1 -u | gzip > unique_assignments.txt.gz

6 Identify reads with multiple barcodes (i.e. potentially chimeric reads). This is identical to

the last step, except for using 'uniq �D' to only print duplicated reads. This step is only

strictly needed when chimeric reads need to be inspected.

pv barcode_assignments.txt.gz | zcat | sort -k 2,2 | uniq | \
 uniq -f 1 -D | gzip > duplicate_assignments.txt.gz

7 Create a file containing barcode read counts for the appropriate read category. For

example, for non-chimeric reads:

pv unique_assignments.txt.gz | zcat | awk '{print $1}' | \
 sort | uniq -c > barcode_counts.txt

Optional [but recommended]: identifying chimeric reads

Splitting Read File Per Barcode

protocols.io | https://dx.doi.org/10.17504/protocols.io.42dgya6 July 2, 2019 4/5

https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.42dgya6

Or for all reads:

pv barcode_assignments.txt.gz | zcat | awk '{print $1}' | \
 sort | uniq -c > barcode_counts.txt

8 For each discovered barcode, using the appropriate read category assignment file, find

the corresponding read IDs, then extract those IDs out of the read FASTQ file. This uses

one of my own scripts, fastx-fetch.pl, to do this directly from a FASTQ file:

Note: this step processes through the read file once per barcode, which could take a

while depending on how many barcodes are detected.

Or, alternatively, for all reads:

mkdir -p demultiplexed
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo "** ${bc} **";
 fastx-fetch.pl -i <(zgrep "^${bc}" unique_assignments.txt.gz | \
 awk '{print $2}') <(pv reads_all.fastq.gz) | \
 gzip > demultiplexed/reads_${bc}.fastq.gz;
done

mkdir -p demultiplexed
for bc in $(awk '{print $2}' barcode_counts.txt);
 do echo "** ${bc} **";
 fastx-fetch.pl -i <(zgrep "^${bc}" barcode_assignments.txt.gz |
\
 awk '{print $2}') <(pv reads_all.fastq.gz) | \
 gzip > demultiplexed/reads_${bc}.fastq.gz;
done

protocols.io | https://dx.doi.org/10.17504/protocols.io.42dgya6 July 2, 2019 5/5

https://gitlab.com/gringer/bioinfscripts/blob/master/fastx-fetch.pl
https://www.protocols.io/
https://www.protocols.io/
https://dx.doi.org/10.17504/protocols.io.42dgya6

