

Mar 15, 2024

CUT and RUN

DOI

dx.doi.org/10.17504/protocols.io.j8nlkwb8dl5r/v1

anita.adami¹

¹Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden.

Raquel Garza

Lund University

Create & collaborate more with a free account

Edit and publish protocols, collaborate in communities, share insights through comments, and track progress with run records.

Create free account

DOI: https://dx.doi.org/10.17504/protocols.io.j8nlkwb8dl5r/v1

Protocol Citation: anita.adami 2024. CUT and RUN. protocols.io https://dx.doi.org/10.17504/protocols.io.j8nlkwb8dl5r/v1

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working

We use this protocol and it's working

Created: August 29, 2022

Last Modified: May 31, 2024

Protocol Integer ID: 69297

Keywords: ASAPCRN, human brain tissue, brain tissue, cut, tissue, brain

Funders Acknowledgements:

Aligning Science Across Parkinson's through the Michael J. Fox Foundation for Parkinson's Research

Grant ID: ASAP-000520 **Swedish Research Council** Grant ID: 2018-02694 Swedish Brain Foundation Grant ID: FO2019-0098

Cancerfonden Grant ID: 190326 Barncancerfonden Grant ID: PR2017-0053

NIHR Cambridge Biomedical Research Centre

Grant ID: NIHR203312

Swedish Society for Medical Research

Grant ID: S19-0100

National Institutes of Health

Grant ID: HG002385

Swedish Research Council Grant ID: 2021-03494 **Swedish Research Council** Grant ID: 2020-01660

Abstract

This protocols describe how to perform CUT&RUN on human brain tissue (frozen)

Troubleshooting

Sample extraction

- 1 Flash-freeze postmortem brain tissue
- 2 Sample 4 50 mg 4 100 mg from human brain tissue and store at 4 -80 °C until use

CUT&RUN

- Activate ConA-coat magnetic beads (Epicypher) by washing twice in bead binding buffer [20 mM HEPES pH 7.5, 10 mM KCl, 1 mM CaCl, 1 mM MnCl₂]. Place on ice until use.
- 4 <u>Isolate nuclei from frozen tissue</u> after incubating with Recombinant Alexa Fluor® 488 Anti-NeuN antibody [EPR12763] Neuronal Marker (ab190195) at a concentration of 1:500 for 30 minutes on ice.

 Run nuclei through the FACS at 4 °C with low flowrate using a 100 mm nozzle and isolate 300.000 nuclei Alexa Fluor 488 positive nuclei.
- Pellet the sorted nuclei at 1,300 x g for 00:15:00 and resuspend in 1 mL of ice-cold nuclear wash buffer (20 mM HEPES, 150 mM NaCl, 0.5 mM spermidine, 1x cOmplete protease inhibitors, 0.1% BSA) and 10 μL per antibody treatment of ConA-coated magnetic beads (Epicypher) added with gentle vortexing (Pipette tips for transferring nuclei were pre-coated with 1% BSA).
- Bind nuclei to beads for 00:10:00 at RT with gentle rotation, and then split bead-bound nuclei into three equal volumes (corresponding to IgG control, H3K4me3 and H3K9me3 treatments).
- Remove wash buffer and resuspend nuclei in Δ 100 μL cold nuclear antibody buffer (20 mM HEPES pH 7.5, 0.15 M NaCl, 0.5 mM Spermidine, 1x Roche complete protease inhibitors, 0.02% w/v digitonin, 0.1% BSA, 2 mM EDTA) containing primary antibody at 1:50 dilution and incubate at 4 °C Overnight with gentle shaking.
- Wash nuclei thoroughly with nuclear digitonin wash buffer (20 mM HEPES pH 7.5, 150 mM NaCl, 0.5 mM Spermidine, 1x Roche cOmplete protease inhibitors, 0.02% digitonin, 0.1%

15m

10m

10m

BSA) on the magnetic stand.

After the final wash, add pA-MNase in nuclear digitonin wash buffer and incubate with the nuclei at $4 \, ^{\circ}\text{C}$ for 01:00:00. Wash nuclei twice, resuspend in $100 \, \mu\text{L}$ digitonin buffer, and chill to $100 \, ^{\circ}\text{C}$ or $100 \, ^{\circ}\text{C}$ in a metal block sitting in wet ice.

1h

- Stimulate genome cleavage by addition of 2 mM CaCl $_2$ at 0 °C for 30 min. Quench the reaction by additing $2 \times 100 \, \mu$ L 2x stop buffer (0.35 M NaCl, 20 mM EDTA, 4 mM EGTA, 0.02% digitonin, 50 ng/ μ L glycogen, 50 ng/ μ L RNase A, 10 fg/ μ L yeast spike-in DNA) and vortex.
- Incubate 00:30:00 at 37 °C to release genomic fragments. Place bead-bound nuclei on the magnet stand and purify fragments from the supernatant using a NucleoSpin clean-up kit (Macherey-Bagel).

30m

Sequencing

Prepare Illumina sequencing libraries using the Hyperprep kit (KAPA) with unique dual-indexed adapters (KAPA).